1
|
Peng L, Zhang C, Ren J, Liu Y, Bao Y. Troponin C is required for copulation and ovulation in Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104258. [PMID: 39818321 DOI: 10.1016/j.ibmb.2025.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/13/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Troponin C (TnC) is a calcium-binding subunit of the troponin complex that regulates muscle contraction in animals. However, the physiological roles of TnC, especially in insect development and reproduction, remain largely unknown. We identified seven TnC genes encoding four EF-hand motif protein in the rice pest, the brown planthopper Nilaparvata lugens. This species has emerged as an ideal model insect to study gene functions because of the availability of its complete genome sequence and of the susceptibility to RNA interference (RNAi). RT-qPCR combined with in situ hybridization showed that TnCⅠ was highly expressed in the bursa copulatrix of ovaries. RNAi-mediated knockdown of TnCⅠ in 2nd-to 5th-instar nymphs generated significantly lethal deficits, and also led to copulation and ovulation failure in adult females, although males displayed appropriate mating behavior. These new findings provide insights into understanding the physiological functions of TnCⅠ in the survival of, and female reproductive success, in N. lugens. Thus, this gene could be used as a target to explore methods for pest control of this important species.
Collapse
Affiliation(s)
- Luyao Peng
- Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Cui Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jinjin Ren
- Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yaxin Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yanyuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Song F, Yan Y, Sun J. Energy consumption during insect flight and bioinspiration for MAV design: A review. Comput Biol Med 2024; 170:108092. [PMID: 38325218 DOI: 10.1016/j.compbiomed.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The excellent biological characteristics of insects provide an important source of inspiration for designing micro air vehicles (MAVs). Insect flight is an incredibly complex and energy-intensive process. Unique insect flight muscles and contraction mechanisms enable flapping at high frequencies. Moreover, the metabolic rate during flight can reach hundreds of times the resting state. Understanding energy consumption during flight is crucial for designing efficient biomimetic aircraft. This paper summarizes the structures and contraction mechanisms of insect flight muscles, explores the underlying metabolic processes, and identifies methods for energy substrate identification and detection, and discusses inspiration for biomimetic MAV design. This paper reviews energy consumption during insect flight, promotes the understanding of insect bioenergetics, and applies this information to the design of MAVs.
Collapse
Affiliation(s)
- Fa Song
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China
| | - Yongwei Yan
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China
| | - Jiyu Sun
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China.
| |
Collapse
|
3
|
Lu Y, Wang Z, Lin F, Ma Y, Kang J, Fu Y, Huang M, Zhao Z, Zhang J, Chen Q, Ren B. Screening and identification of genes associated with flight muscle histolysis of the house cricket Acheta domesticus. Front Physiol 2023; 13:1079328. [PMID: 36714303 PMCID: PMC9873970 DOI: 10.3389/fphys.2022.1079328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Flight muscle histolysis, as an important survival strategy, is a widespread phenomenon in insects and facilitates adaptation to the external environment in various insect taxa. However, the regulatory mechanism underlying this phenomenon in Orthoptera remains unknown. Methods: In this study, the flight muscle histolysis in the house cricket Acheta domesticus was investigated by transcriptomics and RNA interference. Results: The results showed that flight muscle histolysis in A. domesticus was standard and peaked within 9 days after eclosion of adult crickets, and there was no significant difference in the peak time or morphology of flight muscle histolysis between males and females. In addition, the differentially expressed genes between before and after flight muscle histolysis were studied, of which AdomFABP, AdomTroponin T and AdomActin were identified as candidate genes, and after injecting the dsRNA of these three candidates, only the downregulated expression of AdomFABP led to flight muscle histolysis in A. domesticus. Furthermore, the expression level of AdomFABP was compared between before and after flight muscle histolysis based on RT-qPCR. Disscussion: We speculated that AdomFABP might play a role in the degradation of flight muscle by inhibiting muscle development. Our findings laid a molecular foundation for understanding the flight muscle histolysis.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Economical and Applied Entomology of the Education Department of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zizhuo Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fei Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yuqing Ma
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jiangyan Kang
- Key Laboratory of Economical and Applied Entomology of the Education Department of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuying Fu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Minjia Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zhuo Zhao
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China,*Correspondence: Qi Chen, ; Bingzhong Ren,
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China,*Correspondence: Qi Chen, ; Bingzhong Ren,
| |
Collapse
|
4
|
Liang HF, Li XD. Locusta migratoria flight muscle troponin partially activates thin filament in a calcium-dependent manner. INSECT MOLECULAR BIOLOGY 2022; 31:346-355. [PMID: 35084070 DOI: 10.1111/imb.12763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/16/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The troponin (Tn) complex, the sensor for Ca2+ to regulate contraction of striated muscle, is composed of three subunits, that is, TnT, TnI and TnC. Different isoforms of TnI and TnC are expressed in the thorax dorsal longitudinal muscle (flight muscle) and the hind leg extensor tibiae muscle (jump muscle) of the migratory locust, Locusta migratoria. The major Tn complexes in the flight muscle and the jump muscle are Tn-171 (TnT1/TnI7/TnC1) and Tn-153 (TnT1/TnI5/TnC3), respectively. Here, we prepared a number of recombinant Tn complexes and the reconstituted thin filaments, and investigated their regulation on thin filament. Although both Tn-171 and Tn-153 regulate thin filament in a Ca2+ -dependent manner, the extent of Ca2+ activation mediated by Tn-171 was significantly lower than that by Tn-153. We demonstrated that TnC1 and TnC3, rather than TnI5 and TnI7, are responsible for the different levels of the thin filament activation. Mutagenesis of TnC1 and TnC3 shows that the low level of TnC1-mediated thin filament activation can be attributed to the noncanonical residue Leu60 in the EF-hand-II of TnC1. We therefore propose that, in addition to Ca2+ , other regulatory mechanism(s) is required for the full activation of locust flight muscle.
Collapse
Affiliation(s)
- Hui-Fang Liang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Guzmán NV, Kemppainen P, Monti D, Castillo ERD, Rodriguero MS, Sánchez-Restrepo AF, Cigliano MM, Confalonieri VA. Stable inversion clines in a grasshopper species group despite complex geographical history. Mol Ecol 2021; 31:1196-1215. [PMID: 34862997 DOI: 10.1111/mec.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Chromosomal inversions are known to play roles in adaptation and differentiation in many species. They involve clusters of correlated genes (i.e., loci in linkage disequilibrium, LD) possibly associated with environmental variables. The grasshopper "species complex" Trimerotropis pallidipennis comprises several genetic lineages distributed from North to South America in arid and semi-arid high-altitude environments. The southernmost lineage, Trimerotropis sp., segregates for four to seven putative inversions that display clinal variation, possibly through adaptation to temperate environments. We analysed chromosomal, mitochondrial and genome-wide single nucleotide polymorphism data in 19 Trimerotropis sp. populations mainly distributed along two altitudinal gradients (MS and Ju). Populations across Argentina comprise two main chromosomally and genetically differentiated lineages: one distributed across the southernmost border of the "Andes Centrales," adding evidence for a differentiation hotspot in this area; and the other widely distributed in Argentina. Within the latter, network analytical approaches to LD found three clusters of correlated loci (LD-clusters), with inversion karyotypes explaining >79% of the genetic variation. Outlier loci associated with environmental variables mapped to two of these LD-clusters. Furthermore, despite the complex geographical history indicated by population genetic analyses, the clines in inversion karyotypes have remained stable for more than 20 generations, implicating their role in adaptation and differentiation within this lineage. We hypothesize that these clines could be the consequence of a coupling between extrinsic postzygotic barriers and spatially varying selection along environmental gradients resulting in a hybrid zone. These results provide a framework for future investigations about candidate genes implicated in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Noelia V Guzmán
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniela Monti
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Elio R D Castillo
- Laboratorio de Genética Evolutiva "Dr. Claudio J. Bidau", FCEQyN, Universidad Nacional de Misiones (UNaM), Instituto de Biología Subtropical (IBS) (CONICET/UNaM), LQH, Posadas, Misiones, Argentina
| | - Marcela S Rodriguero
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Andrés F Sánchez-Restrepo
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
| | - Maria Marta Cigliano
- Museo de La Plata, Centro de Estudios Parasitológicos y de Vectores (CEPAVE- CONICET/UNLP), Universidad Nacional de la Plata, Buenos Aires, Argentina
| | - Viviana A Confalonieri
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|