1
|
Timmins-Schiffman EB, Khanna R, Brown T, Dilworth J, MacLean BX, Mudge MC, White SJ, Kenkel CD, Rodrigues LJ, Nunn BL, Padilla-Gamiño JL. Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching. J Proteome Res 2025; 24:1317-1328. [PMID: 39996506 DOI: 10.1021/acs.jproteome.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Coral reefs are vital to marine biodiversity and human livelihoods, but they face significant threats from climate change. Increased ocean temperatures drive massive "bleaching" events, during which corals lose their symbiotic algae and the important metabolic resources those algae provide. Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. For DDA, AUC captured a broader dynamic range than spectral counting. DIA yielded better coverage of low abundance proteins than DDA and a higher number of proteins, making it the more suitable method for detecting subtle, yet biologically significant, shifts in protein abundance in gamete bundles. Gametes from bleached corals showed a broadscale decrease in metabolic proteins involved in carbohydrate metabolism, citric acid cycle, and protein translation. This metabolic plasticity could reveal how organisms and their offspring acclimatize and adapt to future environmental stress, ultimately shaping the resilience and dynamics of coral populations.
Collapse
Affiliation(s)
- Emma B Timmins-Schiffman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Rayhan Khanna
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Tanya Brown
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| | - Jenna Dilworth
- College of Letters, Arts and Sciences, University of Southern California Dornsife, AHF 231, 3616 Trousdale Pkwy, Los Angeles, California 90089, United States
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Miranda C Mudge
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Samuel J White
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| | - Carly D Kenkel
- College of Letters, Arts and Sciences, University of Southern California Dornsife, AHF 231, 3616 Trousdale Pkwy, Los Angeles, California 90089, United States
| | - Lisa J Rodrigues
- College of Liberal Arts and Sciences, Villanova University, 800 E. Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Jacqueline L Padilla-Gamiño
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Zhang HH, Yang BJ, Wu Y, Gao HL, Lin XM, Zou JZ, Liu ZW. Characterization of neutral lipases revealed the tissue-specific triacylglycerol hydrolytic activity in Nilaparvata lugens. INSECT SCIENCE 2023; 30:693-704. [PMID: 36093889 DOI: 10.1111/1744-7917.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The lipid metabolism plays an essential role in the development and reproduction of insects, and lipases are important enzymes in lipid metabolism. In Nilaparvata lugens, an important insect pest on rice, triacylglycerol hydrolytic activities were different among tissues, with high activity in integument, ovary, and fat body, but low activity in intestine. To figure out the tissue-specific triacylglycerol hydrolytic activity, we identified 43 lipases in N. lugens. Of these 43 lipases, 23 belonged to neutral lipases, so this group was selected to perform further experiments on triacylglycerol hydrolysis. The complete motifs of catalytic triads, β9 loop, and lid motif, are required for the triacylglycerol hydrolytic activity in neutral lipases, which were found in some neutral lipases with high gene expression levels in integument and ovary, but not in intestine. The recombinant proteins of 3 neutral lipases with or without 3 complete motifs were obtained, and the activity determination confirmed the importance of 3 motifs. Silencing XM_022331066.1, which is highly expressed in ovary and with 3 complete motifs, significantly decreased the egg production and hatchability of N. lugens, partially through decline of the lipid metabolism. In summary, at least one-third of important motifs were incomplete in all neutral lipases with high gene expression in intestine, which could partially explain why the lipase activity in intestine was much lower than that in other tissues. The low activity to hydrolyze triacylglycerol in N. lugens intestine might be associated with its food resource and nutrient components, and the ovary-specific neutral lipases were important for N. lugens reproduction.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bao-Jun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Hangzhou, China
| | - Yong Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao-Li Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xu-Min Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Zheng Zou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Li T, Ye Y, Wu P, Luo R, Zhang H, Zheng W. Proteasome β3 subunit (PSMB3) controls female reproduction by promoting ecdysteroidogenesis during sexual maturation in Bactrocera dorsalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103959. [PMID: 37172766 DOI: 10.1016/j.ibmb.2023.103959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Steroid hormone 20-hydroxyecdysone (20E) plays critical roles in reproductive development in dipterans and several other insect species. Ecdysteroidogenesis in the glands of larval or nymphal insects and other arthropods has been extensively studied, but that in the adult gonads remains largely unknown. Here we identified a proteasome β3 subunit (PSMB3) from a highly invasive pest Bactrocera dorsalis, and found that this gene was crucial for ecdysone production during female reproduction. PSMB3 was enriched in the ovary, and it was upregulated during sexual maturation. RNAi-mediated depletion of PSMB3 resulted in retarded ovarian development and decreased fecundity. Additionally, knockdown of PSMB3 reduced 20E titer in hemolymph of B. dorsalis. Molecularly, RNA sequencing and qPCR validation revealed that PSMB3 depletion suppressed the expression of 20E biosynthetic genes in the ovary and 20E responsive genes in the ovary and fat body. Furthermore, exogenous 20E rescued the inhibition of the ovarian development caused by PSMB3 depletion. Taken together, this study provides new insights into the adult reproductive development-related biological processes controlled by PSMB3, and proposed a potential eco-friendly control strategy against this notorious agricultural pest.
Collapse
Affiliation(s)
- Tianran Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinhao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rengang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Zhang L, Cheng X, Tao S, Peng LY, Zhu Z, Bao YY. Neuronal calcium sensor 2 is key to moulting and oocyte development in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2022; 31:722-733. [PMID: 35789509 DOI: 10.1111/imb.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Intracellular calcium (Ca2+ ) is vital for signal transduction in many cellular events. Several Ca2+ -binding proteins mediate the transduction of intracellular calcium signals. The EF-hand motifs containing neuronal calcium sensor (NCS) proteins are mainly expressed in the nervous system, where they have important roles in the regulation of a variety of neuronal functions. NCS1 has four EF-hand motifs and well-defined neuronal development functions in a variety of eukaryotes. However, NCS2 has only been identified in invertebrates such as insects and nematodes thus far. The functions of NCS2 remain largely unknown. Here, we identified an orthologous NCS2 in the hemipteran Nilaparvata lugens. Based on qRT-PCR, this gene was found to be primarily expressed in the brain. Knockdown of NCS2 in each nymphal instar by RNA interference led to lethality and caused aggradation and disordered arrangement of lipid droplets in the ovaries and testes of adults, which were associated with the absence of mature oocytes in female ovaries and reduction of spermiation in male adults. Our findings revealed a novel function for NCS2 as a regulator in development and reproduction and suggested that this protein had an important role in modulating lipid droplet remodelling in ovary and testis of N. lugens adults.
Collapse
Affiliation(s)
- Lu Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xu Cheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shuai Tao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu-Yao Peng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yan-Yuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|