1
|
Lan T, Su R, Dong Z, Tong X, Zheng X, Wang X. Transcriptome and Expression Analysis of Glycerol Biosynthesis-Related Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae). Int J Mol Sci 2024; 25:11834. [PMID: 39519387 PMCID: PMC11545850 DOI: 10.3390/ijms252111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Glenea cantor Fabricius (Cerambycidae: Lamiinae) is an important pest that damages kapok trees in Southeast Asia with a wide adaptability to temperature. Glycerol is a protectant and energy source for insects in low-temperature environments. However, glycerol biosynthesis-related genes at the molecular level are limited in G. cantor. In this study, the supercooling points and freezing points at different stages were measured, and the cold hardiness of male and female pupae significantly differed. Moreover, a full-length transcriptome of G. cantor was established; glycerol kinase (GK) and glycerol-3-phosphate dehydrogenase (GPDH) genes, which are related to glycerol metabolism, were identified, with a special focus on their expression profiles. A total of 24,476 isoforms stemmed from the full-length transcriptome, along with 568 lncRNAs, 56 transcription factor (TF) families, and 1467 alternative splicing (AS) events. The KEGG pathway enrichment analysis revealed that the isoforms associated with AS were enriched primarily in glycerolipid and glycerophospholipid metabolism. In total, three GK genes and one GPDH gene were identified, and GcGK1 and GcGK3 presented differential sex expression during the pupal stage, which may play a role in thermal adaptability. This study provides a valuable transcriptional database of G. cantor and helps to elucidate the function of glycerol in the thermal adaptation mechanism of longhorn beetles.
Collapse
Affiliation(s)
- Taihui Lan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (T.L.); (R.S.); (X.T.); (X.Z.)
| | - Ranran Su
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (T.L.); (R.S.); (X.T.); (X.Z.)
| | - Zishu Dong
- Institute of Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Xin Tong
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (T.L.); (R.S.); (X.T.); (X.Z.)
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (T.L.); (R.S.); (X.T.); (X.Z.)
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (T.L.); (R.S.); (X.T.); (X.Z.)
| |
Collapse
|
2
|
Walt HK, Ahn SJ, Hoffmann FG. Horizontally transferred glycoside hydrolase 26 may aid hemipteran insects in plant tissue digestion. Mol Phylogenet Evol 2024; 198:108134. [PMID: 38901473 DOI: 10.1016/j.ympev.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Glycoside hydrolases are enzymes that break down complex carbohydrates into simple sugars by catalyzing the hydrolysis of glycosidic bonds. There have been multiple instances of adaptive horizontal gene transfer of genes belonging to various glycoside hydrolase families from microbes to insects, as glycoside hydrolases can metabolize constituents of the carbohydrate-rich plant cell wall. In this study, we characterize the horizontal transfer of a gene from the glycoside hydrolase family 26 (GH26) from bacteria to insects of the order Hemiptera. Our phylogenies trace the horizontal gene transfer to the common ancestor of the superfamilies Pentatomoidea and Lygaeoidea, which include stink bugs and seed bugs. After horizontal transfer, the gene was assimilated into the insect genome as indicated by the gain of an intron, and a eukaryotic signal peptide. Subsequently, the gene has undergone independent losses and expansions in copy number in multiple lineages, suggesting an adaptive role of GH26s in some insects. Finally, we measured tissue-level gene expression of multiple stink bugs and the large milkweed bug using publicly available RNA-seq datasets. We found that the GH26 genes are highly expressed in tissues associated with plant digestion, especially in the principal salivary glands of the stink bugs. Our results are consistent with the hypothesis that this horizontally transferred GH26 was co-opted by the insect to aid in plant tissue digestion and that this HGT event was likely adaptive.
Collapse
Affiliation(s)
- Hunter K Walt
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; Institute for Genomics, Biotechnology and Biocomputing, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
3
|
Zou X, Jia J, Zhu T, Cai S, He Y, Su S, Fang Y, Li J, Lin G, Su J. Identification of pine wood nematode (Bursaphelenchus xylophilus) loading response genes in Japanese pine sawyer (Monochamus alternatus) through comparative genomics and transcriptomics. PEST MANAGEMENT SCIENCE 2024; 80:3873-3883. [PMID: 38511764 DOI: 10.1002/ps.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Pine wood nematode (PWN; Bursaphelenchus xylophilus) is the causative agent of pine wilt disease (PWD), which is considered the most dangerous biohazard to conifer trees globally. The transmission of PWN relies on insect vectors, particularly the Japanese pine sawyer (JPS; Monochamus alternatus). However, the molecular mechanism underlying PWN-JPS assembly remains largely unknown. RESULTS Here, we found that both geographical and gender could significantly affect the PCA (PWN carrying amount) of JPS; thus, JPS transcriptomes from diverse locations and genders were explored regard to PWN loading. Due to the shortage of genomes, we developed a full-length reference transcriptome for analyzing next-generation sequencing data. A comparative genomic study was performed, and 11 248 potential PWN-carrying associate genes (β) were nominated in JPS by using the reported genomes of PWN and non-PWN carrier insect species. Then, 151 differentially expressed transcripts (DETs), 28 of them overlapped with β, correlated with the PCA of JPS were nominated by RNA-Seq, and found that fatty acid β-oxidation might be the key factor that affected the PCA of JPS. Furthermore, JPS fatty acid β-oxidation rates were experimentally decreased using the inhibitor Etomoxir, leading to an increased PCA of JPS. Meanwhile, silencing MaCPT1 in JPS by RNA interference led to a decreased fatty acid β-oxidation rate and increased PCA of JPS. CONCLUSIONS In conclusion, MaCPT1 was able to decrease the PWN-JPS assembly formation through the fatty acid β-oxidation of JPS. These results provide new insights for exploring the impact of PWN invasion on JPS. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangying Zou
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayu Jia
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tengfei Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yiman He
- Key Laboratory of Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shunde Su
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jian Li
- Key Laboratory of Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Li K, Yu SW, Hu H, Feng YF, Storey KB, Ma Y, Zhang JY, Yu DN. The Phylogenetic Relationship of Lamiinae (Coleoptera: Cerambycidae) Using Mitochondrial Genomes. Genes (Basel) 2023; 15:13. [PMID: 38275595 PMCID: PMC10815127 DOI: 10.3390/genes15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Lamiinae is the largest subfamily of the Cerambycidae (longhorn beetles), with approximately 21,863 described species. Previous phylogenetic studies of Lamiinae showed that this subfamily was monophyletic, but the relationship between the tribes of Lamiinae is still controversial. Partial molecular data and species morphological characteristics are not sufficient to resolve species phylogenetic studies perfectly. At the same time, the full mitochondrial genome contains more comprehensive genetic data. Benefiting from the development of next-generation sequencing (NGS), mitochondrial genomes can be easily acquired and used as reliable molecular markers to investigate phylogenetic relationships within Cerambycidae. Using NGS technology, we obtained 11 mitochondrial genome sequences of Lamiinae species. Based on this newly generated mitochondrial genome dataset matrix, we reconstructed the phylogeny of Lamiinae. The Bayesian Inference and Maximum Likelihood analyses strongly support the monophyly of four tribes (Lamiini, Batocerini, Mesosini, and Saperdini), whereas the tribe Acanthocinini was identified as paraphyletic. Other mitochondrial structural features were also observed: the start codon in the nad1 gene of all 11 mitochondrial genomes is TTG; 17-22 bp intergenic spacers (IGS) with a 'TACTA' motif were found between trnS2 and nad1. Moreover, two long IGS were found in Mesosa myops and Batocera sp. Tandem repeats were found in the IGS of Batocera sp.
Collapse
Affiliation(s)
- Ke Li
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Sheng-Wu Yu
- Longquan Protection Center of Qianjiangyuan-Baishanzu National Park, Lishui 323700, China
| | - Hao Hu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yu-Feng Feng
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yue Ma
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Dan-Na Yu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Shin NR, Pauchet Y. First evidence of a horizontally-acquired GH-7 cellobiohydrolase from a longhorned beetle genome. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-14. [PMID: 37533217 DOI: 10.1002/arch.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Xylophagous larvae of longhorned beetles (Coleoptera; Cerambycidae) efficiently break down polysaccharides of the plant cell wall, which make the bulk of their food, using a range of carbohydrate-active enzymes (CAZymes). In this study, we investigated the function and evolutionary history of the first identified example of insect-encoded members of glycoside hydrolase family 7 (GH7) derived from the Lamiinae Exocentrus adspersus. The genome of this beetle contained two genes encoding GH7 proteins located in tandem and flanked by transposable elements. Phylogenetic analysis revealed that the GH7 sequences of E. adspersus were closely related to those of Ascomycete fungi, suggesting that they were acquired through horizontal gene transfer (HGT) from fungi. However, they were more distantly related to those encoded by genomes of Crustacea and of protist symbionts of termites and cockroaches, supporting that the same enzyme family was recruited several times independently in Metazoa during the course of their evolution. The recombinant E. adspersus GH7 was found to primarily break down cellulose polysaccharides into cellobiose, indicating that it is a cellobiohydrolase, and could also use smaller cellulose oligomers as substrates. Additionally, the cellobiohydrolase activity was boosted by the presence of calcium chloride. Our findings suggest that the combination of GH7 cellobiohydrolases with other previously characterized endo-β-1,4-glucanases and β-glucosidases allows longhorned beetles like E. adspersus to efficiently break down cellulose into monomeric glucose.
Collapse
Affiliation(s)
- Na Ra Shin
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|