3
|
Kelly S, Jackson KJ, Peters TJ, Suan D, Goodnow CC. Isolation and characterisation of PR3-specific B cells and their immunoglobulin sequences. J Autoimmun 2024; 142:103129. [PMID: 37952292 DOI: 10.1016/j.jaut.2023.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND PR3 autoantibodies are essential to the diagnosis and monitoring of granulomatosus with polyangiitis, but to date no PR3 autoantibody sequences have been published. OBJECTIVES To identify and characterise PR3-specific B cells from the peripheral blood of patients with PR3 autoantibodies. METHODS Peripheral blood mononuclear cells from seven patients with PR3 autoantibodies were stained with PR3. B cells that bound PR3 underwent single cell sorting, transcriptome sequencing, and their immunoglobulin sequences expressed as antibodies and tested for PR3-specificity by ELISA. RESULTS We identified 19 PR3-specific B cells from only one PR3-seropositive patient at a low frequency (0.0075 % of B cells) in the peripheral blood. These were polyclonal, IgG+ and enriched for IgG4, lambda pairing, IGHJ6 gene usage, CDRH3 length, IGHE and CD71 expression. They demonstrated relatively low levels of somatic hypermutation and variably reduced PR3 binding when reverted to germline. CONCLUSIONS Identifying PR3-specific B cells in the peripheral blood is possible but challenging and those we did identify exhibited features suggesting that PR3-self reactivity may occur early in B-cell development.
Collapse
Affiliation(s)
- Shane Kelly
- Garvan Institute of Medical Research, UNSW Sydney, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia.
| | - Katherine Jl Jackson
- Garvan Institute of Medical Research, UNSW Sydney, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, UNSW Sydney, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Dan Suan
- Garvan Institute of Medical Research, UNSW Sydney, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, UNSW Sydney, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; Cellular Genomics Futures Institute & School of Biomedical Sciences, UNSW Sydney, Australia
| |
Collapse
|
4
|
Dirks J, Andres O, Paul L, Manukjan G, Schulze H, Morbach H. IgD shapes the pre-immune naïve B cell compartment in humans. Front Immunol 2023; 14:1096019. [PMID: 36776874 PMCID: PMC9908586 DOI: 10.3389/fimmu.2023.1096019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
B cell maturation and immunoglobulin (Ig) repertoire selection are governed by expression of a functional B cell receptor (BCR). Naïve B cells co-express their BCR as IgM and IgD isotype. However, the role of the additionally expressed IgD on naïve B cells is not known. Here we assessed the impact of IgD on naïve B cell maturation and Ig repertoire selection in 8 individuals from 3 different families with heterozygous loss-of-function or loss-of expression mutations in IGHD. Although naïve B cells from these individuals expressed IgM on their surface, the IGHD variant in heterozygous state entailed a chimeric situation by allelic exclusion with almost half of the naïve B cell population lacking surface IgD expression. Flow cytometric analyses revealed a distinct phenotype of IgD-negative naïve B cells with decreased expression of CD19, CD20 and CD21 as well as lower BAFF-R and integrin-β7 expression. IgD-negative B cells were less responsive in vitro after engaging the IgM-BCR, TLR7/9 or CD40 pathway. Additionally, a selective disadvantage of IgD-negative B cells within the T2 transitional and mature naïve B cell compartment as well as reduced frequencies of IgMlo/- B cells within the mature naïve B cell compartment lacking IgD were evident. RNA-Ig-seq of bulk sorted B cell populations showed an altered selection of distinct VH segments in the IgD-negative mature naïve B cell population. We conclude that IgD expression on human naïve B cells is redundant for generation of naïve B cells in general, but further shapes the naive B cell compartment starting from T2 transitional B cells. Our observations suggest an unexpected role of IgD expression to be critical for selection of distinct Ig VH segments into the pre-immune Ig repertoire and for the survival of IgMlo/- naïve B cells known to be enriched in poly-/autoreactive B cell clones.
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Andres
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luisa Paul
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Department of Pediatrics I, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Henner Morbach
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Burnett DL, Jackson KJL, Langley DB, Aggrawal A, Stella AO, Johansen MD, Balachandran H, Lenthall H, Rouet R, Walker G, Saunders BM, Singh M, Li H, Henry JY, Jackson J, Stewart AG, Witthauer F, Spence MA, Hansbro NG, Jackson C, Schofield P, Milthorpe C, Martinello M, Schulz SR, Roth E, Kelleher A, Emery S, Britton WJ, Rawlinson WD, Karl R, Schäfer S, Winkler TH, Brink R, Bull RA, Hansbro PM, Jäck HM, Turville S, Christ D, Goodnow CC. Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability. Immunity 2021; 54:2908-2921.e6. [PMID: 34788600 PMCID: PMC8554075 DOI: 10.1016/j.immuni.2021.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.
Collapse
Affiliation(s)
- Deborah L Burnett
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia.
| | | | - David B Langley
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | - Matt D Johansen
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | | | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Gregory Walker
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Bernadette M Saunders
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Hui Li
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Jake Y Henry
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Alastair G Stewart
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Franka Witthauer
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nicole G Hansbro
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Claire Milthorpe
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Sebastian R Schulz
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Edith Roth
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | | | - Sean Emery
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - William D Rawlinson
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, SEALS Randwick, Sydney, NSW 2031, Australia
| | - Rudolfo Karl
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Simon Schäfer
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Rowena A Bull
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Philip M Hansbro
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Hans-Martin Jäck
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stuart Turville
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|