1
|
Zhao J, Zhao Z, Ying P, Zhou Y, Xu Z, Wang H, Tang L. METTL3-mediated m 6 A modification of circPRKAR1B promotes Crohn's colitis by inducing pyroptosis via autophagy inhibition. Clin Transl Med 2023; 13:e1405. [PMID: 37679886 PMCID: PMC10485333 DOI: 10.1002/ctm2.1405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The roles of circRNA and N6-methyladenosine (m6 A) methylation in Crohn's disease (CD) have drawn much attention. Therefore, this investigation aimed to discover how the m6 A modification of circRNAs contributes to CD progression. METHODS The study performed circRNA sequencing on colon samples from four CD patients and four normal controls (NCs) to screen for dysregulated circRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the candidate circRNA expression and determine its correlation to CD-associated inflammatory indicators. In vivo and in vitro investigations were conducted to examine the functions and pathways of circPRKAR1B in CD, besides investigating the m6 A modification role in circRNA expression modulation. RESULTS The RNA-seq revealed that hsa_circ_0008039 (circPRKAR1B) was the most significant upregulated circRNA and was identified as the candidate circRNA for further examinations. Relative circPRKAR1B expression was significantly upregulated in CD colon tissues and closely related to CD-associated inflammatory indices. The circPRKAR1B expression and function were regulated by methyltransferase-like 3 (METTL3)-mediated m6 A methylation. In vitro studies indicated that circPRKAR1B promoted pyroptosis mediated by NLRP3 inflammasome (NLRP3; nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3) and impaired autophagy by interacting with the RNA-binding protein (RBP) SPTBN1, (SPTBN1; spectrin beta, non-erythrocytic 1). The in vivo investigations revealed the treatment effects of si-circPRKAR1B and si-METTL3 in colitis models of IL-10-deficient mice. CONCLUSION Our study reveals that METTL3-mediated m6 A modification of circPRKAR1B promotes Crohn's colitis by aggravating NLRP3 inflammasome-mediated pyroptosis via autophagy impairment in colonic epithelial cells.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Gastrointestinal SurgeryAffiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouP. R. China
| | - Zhibin Zhao
- Department of GastroenterologyAffiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical UniversityTaizhouP. R. China
| | - Pu Ying
- Department of OrthopedicsChangshu Hospital Affiliated to Nanjing University of Chinese MedicineChangshuP. R. China
| | - Yan Zhou
- Department of Gastrointestinal SurgeryAffiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouP. R. China
| | - Ziwei Xu
- Department of General SurgeryFirst Affiliated Hospital of Nanjing Medical UniversityNanjingP. R. China
| | - Honggang Wang
- Department of General SurgeryAffiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical UniversityTaizhouP. R. China
| | - Liming Tang
- Department of Gastrointestinal SurgeryAffiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouP. R. China
| |
Collapse
|
2
|
Zhao J, Lin Z, Ying P, Zhao Z, Yang H, Qian J, Gong Y, Zhou Y, Dai Y, Jiao Y, Zhu W, Wang H, Tang L. circSMAD4 promotes experimental colitis and impairs intestinal barrier functions by targeting JAK2 through sponging miR-135a-5p. J Crohns Colitis 2022; 17:593-613. [PMID: 36239525 DOI: 10.1093/ecco-jcc/jjac154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Numerous studies have explored the association between circular RNAs (circRNAs) and Crohn's disease (CD). However, the pathological role, biological functions, and molecular mechanisms of circRNAs in CD have not been fully elucidated. METHODS The circRNA microarray analysis was performed to identify deregulated circRNAs in colon tissues. The identified circRNA were verified through quantitative real time-polymerase chain reaction (qRT-PCR). In vivo and in vitro functional studies were performed to verify the role of circSMAD4 in CD and investigate the mechanisms involved. RESULTS We found that circSMAD4 was the most significantly upregulated circRNA. The expression level of circSMAD4 was positively correlated with levels of inflammatory factors. Overexpression of circSMAD4 impaired tight junction (TJ) proteins and enhanced apoptosis of epithelial cells. These effects were reversed by treatment with miR-135a-5p mimic. Mechanistic studies showed that circSMAD4 exerts its effects on CD by "sponging" miR-135a-5p to regulate Janus kinase 2 (JAK2). Si-circSMAD4 delivery through microspheres ameliorated experimental colitis and protected the intestinal barrier function in IL-10 knock-out mice. CONCLUSION This study shows that circSMAD4 regulates the progression of experimental colitis via the miR-135a-5p/JAK2 signaling axis and it may be a potential therapeutic target.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Gastrointestinal Surgery and and Central Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University
| | - Zhiliang Lin
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University
| | - Pu Ying
- Department of Orthopedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Zhibin Zhao
- Department of Gastroenterology, Taizhou People's Hospital Affiliated to Nanjing Medical University
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University
| | - Jun Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University
| | - Yu Gong
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University
| | - Yan Zhou
- Department of Gastrointestinal Surgery and and Central Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University
| | - Yi Dai
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University
| | - Yuwen Jiao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Honggang Wang
- Department of General Surgery, Taizhou People's Hospital Affiliated to Nanjing Medical University
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University
| |
Collapse
|
3
|
PLGA microspheres carrying miR-20a-5p improved intestinal epithelial barrier function in patients with Crohn's disease through STAT3-mediated inhibition of Th17 differentiation. Int Immunopharmacol 2022; 110:109025. [PMID: 35853280 DOI: 10.1016/j.intimp.2022.109025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent studies have shown that microRNAs (miRNAs) are aberrantly expressed in patients with Crohn's disease (CD). This suggests that the aberrant expression of miRNAs may contribute to the development of CD. Currently, the specific miRNAs involved in CD development have not been clearly identified. Therefore, we aimed to identify CD-associated miRNAs and explore their functions. METHODS miRNA microarray analysis was performed to screen for differentially expressed miRNAs in colon tissues from normal controls (NC) and CD patients. The identified miRNAs were validated using quantitative real-time PCR (qPCR). The therapeutic roles of miR-20a-5p mimics via the delivery of poly(lactic-co-glycolic acid) microspheres (PLGA MSs) were further investigated in IL-10-/- mice with spontaneous chronic colitis that were used as a model of CD. The target genes of miR-20a-5p and the associated signaling pathways were identified through bioinformatic analysis and experimental verification of the interactions between the targets predicted by the algorithms and dysregulated mRNAs. RESULTS The analysis showed that miR-20a-5p was the most significantly downregulated miRNA in patients with CD. Treatment with PLGA MSs carrying miR-20a-5p significantly ameliorated the colitis, decreased mucosal inflammation, and improved epithelial barrier function. Bioinformatic analysis and experimental studies showed that miR-20a-5p inhibition enhanced Th17 differentiation and improved intestinal epithelial barrier function by targeting STAT3. CONCLUSIONS Downregulation of miR-20a-5p improved the intestinal epithelial barrier function and prevented CD development through the STAT3/IL-17 signaling pathway. Therefore, the delivery of miR-20a-5p by PLGA MSs may serve as a potential therapeutic strategy for CD treatment.
Collapse
|
4
|
Wang W, Zhang Y, Wang X, Che H, Zhang Y. Piperine Improves Obesity by Inhibiting Fatty Acid Absorption and Repairing Intestinal Barrier Function. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:410-418. [PMID: 34591253 DOI: 10.1007/s11130-021-00919-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Currently, the weight loss effects of piperine have gained considerable attention; however, the underlying mechanism needs to be comprehensively elucidated. In the present study, we aimed to investigate the relationship between the weight loss effects of piperine and intestinal function. Based on the obtained results, piperine inhibited intestinal fatty acid absorption in both cellular and animal models. The underlying mechanism may be related to the downregulation of fatty acid absorption-related genes, fatty acid-binding protein 2 and cluster of differentiation 36, but not fatty acid transport protein 4. In addition, piperine repaired the tight junction damage induced by obesity by downregulating jejunal tumor necrosis factor-α and reducing lipopolysaccharide-induced damage on intestinal cell proliferation, thus enhancing intestinal barrier function, which is beneficial in reducing chronic inflammation associated with obesity. In conclusion, the anti-obesity effect of piperine is related to the enhancement of intestinal barrier function and inhibition of intestinal fatty acid absorption.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yanhua Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, China.
| |
Collapse
|
5
|
Han Y, Jia Q, Jahani PS, Hurrell BP, Pan C, Huang P, Gukasyan J, Woodward NC, Eskin E, Gilliland FD, Akbari O, Hartiala JA, Allayee H. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nat Commun 2020; 11:1776. [PMID: 32296059 PMCID: PMC7160128 DOI: 10.1038/s41467-020-15649-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic and genetically complex respiratory disease that affects over 300 million people worldwide. Here, we report a genome-wide analysis for asthma using data from the UK Biobank and the Trans-National Asthma Genetic Consortium. We identify 66 previously unknown asthma loci and demonstrate that the susceptibility alleles in these regions are, either individually or as a function of cumulative genetic burden, associated with risk to a greater extent in men than women. Bioinformatics analyses prioritize candidate causal genes at 52 loci, including CD52, and demonstrate that asthma-associated variants are enriched in regions of open chromatin in immune cells. Lastly, we show that a murine anti-CD52 antibody mimics the immune cell-depleting effects of a clinically used human anti-CD52 antibody and reduces allergen-induced airway hyperreactivity in mice. These results further elucidate the genetic architecture of asthma and provide important insight into the immunological and sex-specific relevance of asthma-associated risk variants.
Collapse
Affiliation(s)
- Yi Han
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qiong Jia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pedram Shafiei Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Pin Huang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Janet Gukasyan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicholas C Woodward
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Eleazar Eskin
- Department of Computer Science and Inter-Departmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Frank D Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jaana A Hartiala
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
Gressler M, Heddergott C, N'Go IC, Renga G, Oikonomou V, Moretti S, Coddeville B, Gaifem J, Silvestre R, Romani L, Latgé JP, Fontaine T. Definition of the Anti-inflammatory Oligosaccharides Derived From the Galactosaminogalactan (GAG) From Aspergillus fumigatus. Front Cell Infect Microbiol 2019; 9:365. [PMID: 31781511 PMCID: PMC6851199 DOI: 10.3389/fcimb.2019.00365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Galactosaminogalactan (GAG) is an insoluble aminosugar polymer produced by Aspergillus fumigatus and has anti-inflammatory properties. Here, the minimum glycosidic sequences required for the induction of IL-1Ra by peripheral blood mononuclear cells (PBMCs) was investigated. Using chemical degradation of native GAG to isolate soluble oligomers, we have found that the de-N-acetylation of galactosamine residues and the size of oligomer are critical for the in vitro immune response. A minimal oligomer size of 20 galactosamine residues is required for the anti-inflammatory response but the presence of galactose residues is not necessary. In a Dextran sulfate induced colitis mouse model, a fraction of de-N-acetylated oligomers of 13 < dp < 20 rescue inflammatory damage like the native GAG polymer in an IL-1Ra dependent pathway. Our results demonstrate the therapeutic suitability of water-soluble GAG oligosaccharides in IL-1 mediated hyper-inflammatory diseases and suggest that α-1,4-galactosamine oligomers chemically synthesized could represent new anti-inflammatory glycodrugs.
Collapse
Affiliation(s)
| | | | - Inés C N'Go
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | - Giorgia Renga
- Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Silvia Moretti
- Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Bernadette Coddeville
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) UMR 8576 CNRS, Université de Lille, Lille, France
| | - Joana Gaifem
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Luigina Romani
- Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | | | | |
Collapse
|
7
|
Zhao J, Wang H, Yang H, Zhou Y, Tang L. Autophagy induction by rapamycin ameliorates experimental colitis and improves intestinal epithelial barrier function in IL-10 knockout mice. Int Immunopharmacol 2019; 81:105977. [PMID: 31677991 DOI: 10.1016/j.intimp.2019.105977] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND An impairment of the intestinal barrier function is one of the major characteristics of Crohn's disease (CD). This study aimed to evaluate the impact of autophagy induction by rapamycin on the intestinal epithelial barrier function in CD model mice. METHODS IL-10 knockout (IL-10 KO) mice were used as the human CD models in this study. All the mice were randomly assigned into four groups, (a) wild-type (WT) group; (b) IL-10 KO group; (c) IL-10 KO + rapamycin group and (d) IL-10 KO + 3-methyladenine (3-MA), containing 6 mice in each group. The disease activity index (DAI), histology, pro-inflammatory cytokines and chemotactic factors in colon tissues, intestinal and colonic permeability, distributions and expressions of tight junction (TJ) proteins, epithelial apoptosis of mice in four groups were evaluated and compared. RESULTS Autophagy induction by rapamycin treatment ameliorated DAI and histological colitis, decreased pro-inflammatory cytokines (TNF-α, IFN-γ and IL-17) and chemotactic factors (CXCL-1 and CXCL-2), decreased intestinal and colonic permeability, improved the distribution and expression of TJ proteins in IL-10 KO mice. CONCLUSION Autophagy induction by rapamycin significantly improved intestinal barrier function and protected IL-10 KO mice from the experimental chronic colitis.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, PR China; Department of General Surgery, The First Affiliated Hospital of Soochow University, PR China
| | - Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou People's Hospital, Medical School of Nantong University, PR China
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, PR China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, PR China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, PR China.
| |
Collapse
|
8
|
Zuo L, Li J, Ge S, Ge Y, Shen M, Wang Y, Zhou C, Wu R, Hu J. Bryostatin-1 ameliorated experimental colitis in Il-10 -/- Mice by protecting the intestinal barrier and limiting immune dysfunction. J Cell Mol Med 2019; 23:5588-5599. [PMID: 31251471 PMCID: PMC6652299 DOI: 10.1111/jcmm.14457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Bryostatin‐1 (Bry‐1) has been proven to be effective and safe in clinical trials of a variety of immune‐related diseases. However, little is known about its effect on Crohn's disease (CD). We aimed to investigate the impact of Bry‐1 on CD‐like colitis and determine the mechanism underlying this effect. In the present study, 15‐week‐old male Il‐10−/− mice with spontaneous colitis were divided into positive control and Bry‐1‐treated (Bry‐1, 30 μg/kg every other day, injected intraperitoneally for 4 weeks) groups. Age‐matched, male wild‐type (WT) mice were used as a negative control. The effects of Bry‐1 on colitis, intestinal barrier function and T cell responses as well as the potential regulatory mechanisms were evaluated. We found that the systemic delivery of Bry‐1 significantly ameliorated colitis in Il‐10−/− mice, as demonstrated by decreases in the disease activity index (DAI), inflammatory score and proinflammatory mediator levels. The protective effects of Bry‐1 on CD‐like colitis included the maintenance of intestinal barrier integrity and the helper T cell (Th)/regulatory T cell (Treg) balance. These effects of Bry‐1 may act in part through nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling activation and STAT3/4 signalling inhibition. The protective effect of Bry‐1 on CD‐like colitis suggests Bry‐1 has therapeutic potential in human CD, particularly given the established clinical safety of Bry‐1.
Collapse
Affiliation(s)
- Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Jing Li
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengdi Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical medicine, Bengbu medical college, Bengbu, China
| | - Yan Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical medicine, Bengbu medical college, Bengbu, China
| | - Changmin Zhou
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical medicine, Bengbu medical college, Bengbu, China
| | - Rong Wu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China.,Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Wang H, Wang Y, Zhao J, Jiang J, Zhou Y, Shi P, Liu Q, Sun Y. Dietary Nondigestible Polysaccharides Ameliorate Colitis by Improving Gut Microbiota and CD4 + Differentiation, as Well as Facilitating M2 Macrophage Polarization. JPEN J Parenter Enteral Nutr 2018; 43:401-411. [PMID: 30277587 DOI: 10.1002/jpen.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND The aim of this study was to investigate the therapeutic mechanism of a specific multifiber mix diet (MF) designed to match the fiber content of a healthy diet in interleukin-10 knockout (IL-10-/- ) mice with spontaneous chronic colitis displaying similar characteristics to those of human Crohn's disease (CD). METHODS Sixteen-week-old IL-10-/- mice were used for the experiments with MF diet for 4 weeks. Severity of colitis, the composition of the fecal microbiota, expression of Th1/Th17 cells, myeloperoxidase (MPO) concentrations, and inflammatory cytokines and chemokines (tumor necrosis factor-α [TNF-α], IL-6, macrophage inflammatory protein [MIP]-2, monocyte chemoattractant protein-1 [MCP-1], and MIP-1α), as well as arginase 1 (Arg1) and signal transducers and activators of transcription 6 (STAT6) proteins, were measured at the end of the experiment. In addition, the corresponding metabolites (short-chain fatty acids) of MF on CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) were also detected in vivo and in vitro. RESULTS MF treatment significantly ameliorated colitis associated with decreased lamina propria frequency of Th1/Th17 cells, MPO concentrations, and inflammatory cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1, and MIP-1α). An increase in gut microbial diversity was observed after MF treatment compared with IL-10-/- mice, including a significant increase in bacteria belonging to the Firmicutes phylum and a significant decrease in bacteria belonging to the Proteobacteria phylum. Moreover, MF treatment increased the differentiation of CD4+ CD25+ Foxp3+ Tregs mainly by microbial metabolites butyrate. In addition, Arg1 and STAT6 proteins were also significantly increased after MF treatment. CONCLUSIONS These results shed light on the contribution of MF treatment to the CD mouse model and suggest that MF has potential as a therapeutic strategy for enhancing efficacy in inducing remission in patients with active CD.
Collapse
Affiliation(s)
- Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yong Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jianguo Jiang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yaxing Zhou
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Peiliang Shi
- Model Animal Research Center of Nanjing University, Nanjing, 210089, Jiangsu Province, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| |
Collapse
|
10
|
Liu J, Wang H, Li Y, Shi P, Gong J, Gu L, Zhu W, Li J. Anti-mouse CD52 Treatment Ameliorates Colitis through Suppressing Th1/17 Mediated Inflammation and Promoting Tregs Differentiation in IL-10 Deficient Mice. Biol Pharm Bull 2018; 41:1423-1429. [PMID: 29899181 DOI: 10.1248/bpb.b18-00261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies suggested that excessive T helper (Th)1/17 cells concomitant with regulatory T cell deficiency might play important roles in Crohn's disease. Anti-cluster of differentiation 52 (CD52) monoclonal antibody (mAb), which aims on CD52 antigen on mature immunocytes, has both T cell depletion and immunosuppressive activities. In this study, we evaluated the therapeutic effects and possible mechanisms of anti-CD52 treatment on interleukin-10 (IL-10) deficient mouse. Anti-mouse CD52 mAb was administered to C3H/HeJBir.IL-10-/- (C3H.IL-10-/-) mice intraperitoneally 20 µg per week for 2 weeks. The disease activity index, body weight, the histological grading of colitis, and levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-17 and IL-6 in colon were quantified after treatment. In addition, CD25, Forkhead box P3 (Foxp3) and transforming growth factor (TGF)-β gene as well as the percentage of CD25+Foxp3+ T cells in colon were also measured. The severity of colitis in IL-10-/- mice was significantly decreased by the treatment, with improvement of colon histological grade. The treatment also decreased the TNF-α, IFN-γ, IL-17 and IL-6 levels in colon. Furthermore, the treatment up-regulated the mRNA expression of CD25, Foxp3 and TGF-β gene as well as the percentage of CD25+Foxp3+ T cells in colon lamina propria mononuclear cells (LPMCs) of IL-10-/- mice. Our data might indicate that anti-CD52 treatment could ameliorate the colitis of C3H.IL-10-/- mice and it might be related to the suppression of Th1/17 related inflammation and the promotion of regulatory T cell differentiation. Thus, our data reveals that anti-CD52 treatment may hold potential for clinical applications for Crohn's disease treatment.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University.,Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University
| | - Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Peiliang Shi
- Model Animal Research Center of Nanjing University
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Lili Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| |
Collapse
|
11
|
Gallo P, Centonze D, Marrosu MG. Alemtuzumab for multiple sclerosis: the new concept of immunomodulation. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40893-017-0024-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Park JH, Jeong DY, Peyrin-Biroulet L, Eisenhut M, Shin JI. Insight into the role of TSLP in inflammatory bowel diseases. Autoimmun Rev 2016; 16:55-63. [PMID: 27697608 DOI: 10.1016/j.autrev.2016.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Proinflammatory cytokines are thought to modulate pathogeneses of various inflammatory bowel diseases (IBDs). Thymic stromal lymphopoietin (TSLP), which has been studied in various allergic diseases such as asthma, atopic dermatitis (AD) and eosinophilic esophagitis (EoE), has been less considered to be involved in IBDs. However, mucosal dendritic cells (DCs) induced by various cytokines including TSLP were reported to cause polarization of T cell toward Th2 response, the differentiation of regulatory T-cell (Treg), and secretion of IgA by B cells. In this review, we discuss the concept that decreased TSLP has the potential to accelerate the development of Th1 response dominant diseases such as the Crohn's disease (CD) while increased TSLP has the potential to lead to a development of Th2 cell dominant diseases such the ulcerative colitis (UC). To examine TSLP's role as a potential determining factor for differentiating UC and CD, we analyzed the effects of other genes regulated by TSLP in regards to the UC and CD pathogeneses using data from online open access resources such as NetPath, GeneMania, and the String database. Our findings indicate that TSLP is a key mediator in the pathogenesis of IBDs and that further studies are needed to evaluate its role.
Collapse
Affiliation(s)
| | | | - Laurent Peyrin-Biroulet
- Inserm U954 and Department of Gastroenterology, Nancy University Hospital, Université de Lorraine, France
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Wang H, Shi P, Zuo L, Dong J, Zhao J, Liu Q, Zhu W. Dietary Non-digestible Polysaccharides Ameliorate Intestinal Epithelial Barrier Dysfunction in IL-10 Knockout Mice. J Crohns Colitis 2016; 10:1076-86. [PMID: 26944415 DOI: 10.1093/ecco-jcc/jjw065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Enteral nutrition [EN] was reported to be as effective as steroids in achieving short-term remission in patients with Crohn's disease [CD], and exclusive EN [EEN] is widely used as primary therapy in children with CD. The aim of this study was to investigate the effect of a specific multi-fibre mix [MF], designed to match the fibre content of a healthy diet, on intestinal epithelial barrier function in IL-10 knockout [IL-10(-/-)] mice with spontaneous chronic colitis. METHODS IL-10(-/-) mice aged 16 weeks, with established colitis, were used for the experiments with multi-fibre mix diet [MF] for 4 weeks. Severity of colitis, levels of short cahin fatty acids [SCFA] in caecum contents, expression of STAT 3 and STAT 4 proteins, CD4(+) CD45(+) lymphocytes, CD4(+)Foxp3(+) regulatory T cells [Tregs] and cytokines in the lamina propria [LP], epithelial expression of tight junction proteins, TNF-α/TNFR2 mRNA expression, and epithelial apoptosis in the proximal colon were measured at the end of the experiment. RESULTS MF feeding effectively attenuated disease activity index and colitis associated with decreased lamina propria CD4(+) CD45(+) lymphocytes, IFN-γ/IL-17A mRNA expression, and p-STAT 3 and p-STAT 4 expression in colonic mucosa of IL-10(-/-) mice [p < 0.05]. Furthermore, CD4(+)Foxp3(+) Tregs in the LP and concentrations of total SCFA, acetate, propionate, and butyrate in the caecum were markedly increased after MF feeding in IL-10(-/-) mice. After MF feeding, increased epithelial expression and correct localisation of tight junction proteins [occludin and zona occludens protein 1], as well as reduced TNF-α/TNFR2 mRNA expression and epithelial apoptosis, were also observed in IL-10(-/-) mice. CONCLUSIONS These results indicated that EEN supplemented with the tested fibre mix, known to modulate the intestinal microbiota composition and SCFA production, could possibly improve efficacy in inducing remission in patients with active CD.
Collapse
Affiliation(s)
- Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Medical School of Nantong University, Taizhou, China Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peiliang Shi
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Lugen Zuo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianning Dong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Zhao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, Medical School of Nantong University, Taizhou, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Wang H, Shi P, Huang C, Liu Q. Maresin 1 ameliorates iron-deficient anemia in IL-10(-/-) mice with spontaneous colitis by the inhibition of hepcidin expression though the IL-6/STAT3 pathway. Am J Transl Res 2016; 8:2758-2766. [PMID: 27398158 PMCID: PMC4931169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/08/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Approximately 50% of patients with inflammatory bowel disease (IBD) suffer from anemia, which is prevalently caused by iron deficiency. Maresin 1 (MaR1) is a novel docosahexaenoic acid-derived pro-resolving agent that promotes the resolution of inflammation. The aim of the present study was to investigate the therapeutic effects of MaR1 on iron-deficient anemia in IL-10 knockout (IL-10(-/-)) mice with spontaneous chronic colitis. METHODS IL-10(-/-) mice of 16 weeks of age with established colitis were used for the experiments with MaR1 treatment for 2 weeks. Histologic injury, CD4+ lymphocyte values in the lamina propria, blood hemoglobin, hematocrit, serum iron concentrations, transferrin saturation, splenic iron stores, levels of inflammatory cytokines, expression of liver hepcidin mRNA, and western blotting of STAT3 were analyzed in this study. RESULTS MaR1 treatment (0.3 ng/mouse) effectively attenuated histological colitis typically associated with decreased CD4+ lymphocytes in the lamina propria as well as the concentrations of MPO, TNF-α, IFN-γ, IL-6 and IL-17 (P<0.05). Furthermore, reduced expression of liver hepcidin mRNA and p-STAT3 expression, as well as increased hemoglobin concentration, hematocrit, levels of serum iron, transferrin saturation and splenic iron stores were found in IL-10(-/-) mice after MaR1 treatment (P<0.05). CONCLUSIONS These results indicate that MaR1 treatment ameliorates iron-deficient anemia by reducing colonic inflammation and inhibiting hepcidin expression though the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Honggang Wang
- Department of General Surgery, Taizhou People’s Hospital Affiliated to Nantong UniversityNo. 210 Yingchun Road, Taizhou, Jiangsu Province 225300, China
| | - Peiliang Shi
- Model Animal Research Center of Nanjing UniversityNo. 12 Xuefu Road, Nanjing, Jiangsu Province, China
| | - Chuanjiang Huang
- Department of General Surgery, Taizhou People’s Hospital Affiliated to Nantong UniversityNo. 210 Yingchun Road, Taizhou, Jiangsu Province 225300, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People’s Hospital Affiliated to Nantong UniversityNo. 210 Yingchun Road, Taizhou, Jiangsu Province 225300, China
| |
Collapse
|
15
|
DHA protects against experimental colitis in IL-10-deficient mice associated with the modulation of intestinal epithelial barrier function. Br J Nutr 2015; 114:181-8. [PMID: 26104043 DOI: 10.1017/s0007114515001294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A defect in the intestinal barrier is one of the characteristics of Crohn's disease (CD). The tight junction (TJ) changes and death of epithelial cells caused by intestinal inflammation play an important role in the development of CD. DHA, a long-chain PUFA, has been shown to be helpful in treating inflammatory bowel disease in experimental models by inhibiting the NF-κB pathway. The present study aimed at investigating the specific effect of DHA on the intestinal barrier function in IL-10-deficient mice. IL-10-deficient mice (IL-10(-/-)) at 16 weeks of age with established colitis were treated with DHA (i.g. 35.5 mg/kg per d) for 2 weeks. The severity of their colitis, levels of pro-inflammatory cytokines, epithelial gene expression, the distributions of TJ proteins (occludin and zona occludens (ZO)-1), and epithelial apoptosis in the proximal colon were measured at the end of the experiment. DHA treatment attenuated the established colitis and was associated with reduced infiltration of inflammatory cells in the colonic mucosa, lower mean histological scores and decreased levels of pro-inflammatory cytokines (IL-17, TNF-α and interferon-γ). Moreover, enhanced barrier function was observed in the DHA-treated mice that resulted from attenuated colonic permeability, rescued expression and corrected distributions of occludin and ZO-1. The results of the present study indicate that DHA therapy may ameliorate experimental colitis in IL-10(-/-) mice by improving the intestinal epithelial barrier function.
Collapse
|
16
|
Abstract
Alemtuzumab is a humanized monoclonal antibody against CD52 (cluster of differentiation 52) and is approved for the therapy of relapsing-remitting multiple sclerosis. The application of alemtuzumab leads to a rapid, but long-lasting depletion predominantly of CD52-bearing B and T cells with reprogramming effects on immune cell composition resulting in the restoration of tolerogenic networks. Alemtuzumab has proven high efficacy in clinical phase II and III trials, where interferon β-1a was used as active comparator. However, alemtuzumab is associated with frequent and considerable risks. Most importantly secondary autoimmune disease affects 30%-40% of patients, predominantly impairing thyroid function. Extensive monitoring and early intervention allow for an appropriate risk management. However, new and reliable biomarkers for individual risk stratification and treatment response to improve patient selection and therapy guidance are a significant unmet need. Only a deeper understanding of the underlying mechanisms of action (MOA) will reveal such markers, maximizing the best potential risk-benefit ratio for the individual patient. This review provides and analyses the current knowledge on the MOA of alemtuzumab. Most recent data on efficacy and safety of alemtuzumab are presented and future research opportunities are discussed.
Collapse
|
17
|
Zhao J, Sun Y, Shi P, Dong JN, Zuo LG, Wang HG, Gong JF, Li Y, Gu LL, Li N, Li JS, Zhu WM. Celastrol ameliorates experimental colitis in IL-10 deficient mice via the up-regulation of autophagy. Int Immunopharmacol 2015; 26:221-8. [PMID: 25858875 DOI: 10.1016/j.intimp.2015.03.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Celastrol had been proved effective in the treatment for IBD, probably with the modulation of oxidative stress, inflammatory cytokines and intestinal homeostasis. This study was aimed to investigate whether celastrol could ameliorate the inflammation of IL-10 deficient mice, a murine model of Crohn's disease (CD) with the induction of autophagy. MATERIAL AND METHODS The mice included were divided into four groups, ##WT group, IL-10(-/-) group, Cel group and Control group (celastrol+3-Methyladenine). Celastrol (2 mg/kg) treatment by gavage was administered to mice daily over one week. 3-Methyladenine (autophagy inhibitors) was administered at a dose of 30 mg/kg by intraperitoneal injection. The histological evaluation of the colon, tissue myeloperoxidase (MPO), and colon inflammation of mice in the four groups was evaluated and compared. Furthermore, the PI3K/Akt/mTOR pathway and the status of autophagy in intestine affected by celastrol were also assessed. RESULTS The one-week administration of celastrol ameliorated established colitis in IL-10 deficient mice, associated with a reduction of marked histological inflammation, a decreased colon MPO concentration and suppression of colonic proinflammatory cytokine. Furthermore, the decreased neutrophil infiltration in proximal colon and improvement of inflammation in the Cel group was much more obvious than that in the Control group. The Western blotting analysis of the PI3K/Akt/mTOR pathway and autophagy showed that celastrol treatment up-regulated the autophagy of colon tissue by suppressing the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS Celastrol ameliorates experimental colitis in IL-10 deficient mice via the up-regulation of autophagy by suppressing the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jie Zhao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Ye Sun
- The Center of Diagnosis and Treatment for Joint Disease, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, China.
| | - Peiliang Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China.
| | - Jian-Ning Dong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Lu-Gen Zuo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Hong-Gang Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Jian-Feng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Li-Li Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Ning Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Jie-Shou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Wei-Ming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| |
Collapse
|