1
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Zhang M, Xu Y, Zhu G, Zeng Q, Gao R, Qiu J, Su W, Wang R. Human C15orf39 Inhibits Inflammatory Response via PRMT2 in Human Microglial HMC3 Cell Line. Int J Mol Sci 2024; 25:6025. [PMID: 38892217 PMCID: PMC11173073 DOI: 10.3390/ijms25116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Microglia-mediated inflammatory response is one key cause of many central nervous system diseases, like Alzheimer's disease. We hypothesized that a novel C15orf39 (MAPK1 substrate) plays a critical role in the microglial inflammatory response. To confirm this hypothesis, we used lipopolysaccharide (LPS)-and interferon-gamma (IFN-γ)-induced human microglia HMC3 cells as a representative indicator of the microglial in vitro inflammatory response. We found that C15orf39 was down-regulated when interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) expression increased in LPS/IFN-γ-stimulated HMC3 cells. Once C15orf39 was overexpressed, IL-6 and TNFα expression were reduced in LPS/IFN-γ-stimulated HMC3 cells. In contrast, C15orf39 knockdown promoted IL-6 and TNFα expression in LPS/IFN-γ-stimulated HMC3 cells. These results suggest that C15orf39 is a suppressive factor in the microglial inflammatory response. Mechanistically, C15orf39 interacts with the cytoplasmic protein arginine methyltransferase 2 (PRMT2). Thus, we termed C15orf39 a PRMT2 interaction protein (PRMT2 IP). Furthermore, the interaction of C15orf39 and PRMT2 suppressed the activation of NF-κB signaling via the PRMT2-IκBα signaling axis, which then led to a reduction in transcription of the inflammatory factors IL6 and TNF-α. Under inflammatory conditions, NF-κBp65 was found to be activated and to suppress C15orf39 promoter activation, after which it canceled the suppressive effect of the C15orf39-PRMT2-IκBα signaling axis on IL-6 and TNFα transcriptional expression. In conclusion, our findings demonstrate that in a steady condition, the interaction of C15orf39 and PRMT2 stabilizes IκBα to inhibit IL-6 and TNFα expression by suppressing NF-κB signaling, which reversely suppresses C15orf39 transcription to enhance IL-6 and TNFα expression in the microglial inflammatory condition. Our study provides a clue as to the role of C15orf39 in microglia-mediated inflammation, suggesting the potential therapeutic efficacy of C15orf39 in some central nervous system diseases.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Perez-Garcia J, Herrera-Luis E, Li A, Mak ACY, Huntsman S, Oh SS, Elhawary JR, Eng C, Beckman KB, Hu D, Lorenzo-Diaz F, Lenoir MA, Rodriguez-Santana J, Zaitlen N, Villar J, Borrell LN, Burchard EG, Pino-Yanes M. Multi-omic approach associates blood methylome with bronchodilator drug response in pediatric asthma. J Allergy Clin Immunol 2023; 151:1503-1512. [PMID: 36796456 DOI: 10.1016/j.jaci.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Albuterol is the drug most widely used as asthma treatment among African Americans despite having a lower bronchodilator drug response (BDR) than other populations. Although BDR is affected by gene and environmental factors, the influence of DNA methylation is unknown. OBJECTIVE This study aimed to identify epigenetic markers in whole blood associated with BDR, study their functional consequences by multi-omic integration, and assess their clinical applicability in admixed populations with a high asthma burden. METHODS We studied 414 children and young adults (8-21 years old) with asthma in a discovery and replication design. We performed an epigenome-wide association study on 221 African Americans and replicated the results on 193 Latinos. Functional consequences were assessed by integrating epigenomics with genomics, transcriptomics, and environmental exposure data. Machine learning was used to develop a panel of epigenetic markers to classify treatment response. RESULTS We identified 5 differentially methylated regions and 2 CpGs genome-wide significantly associated with BDR in African Americans located in FGL2 (cg08241295, P = 6.8 × 10-9) and DNASE2 (cg15341340, P = 7.8 × 10-8), which were regulated by genetic variation and/or associated with gene expression of nearby genes (false discovery rate < 0.05). The CpG cg15341340 was replicated in Latinos (P = 3.5 × 10-3). Moreover, a panel of 70 CpGs showed good classification for those with response and nonresponse to albuterol therapy in African American and Latino children (area under the receiver operating characteristic curve for training, 0.99; for validation, 0.70-0.71). The DNA methylation model showed similar discrimination as clinical predictors (P > .05). CONCLUSIONS We report novel associations of epigenetic markers with BDR in pediatric asthma and demonstrate for the first time the applicability of pharmacoepigenetics in precision medicine of respiratory diseases.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Annie Li
- Department of Medicine, University of California, San Francisco, Calif
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, Calif
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, Calif
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Celeste Eng
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Donglei Hu
- Department of Medicine, University of California, San Francisco, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), ULL, Santa Cruz de Tenerife, Spain
| | | | | | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Calif; Department of Computational Medicine, University of California, Los Angeles, Calif
| | - Jesús Villar
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr Negrín, Las Palmas de Gran Canaria, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, ULL, La Laguna, Spain.
| |
Collapse
|
4
|
Identification of Differentially Expressed Genes Particularly Associated with Immunity in Uremia Patients by Bioinformatic Analysis. Anal Cell Pathol (Amst) 2022; 2022:5437560. [PMID: 36618529 PMCID: PMC9815924 DOI: 10.1155/2022/5437560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Uremia is a common syndrome that happens to nearly all end-stage kidney diseases, which profound have changes in human gene expressions, but the related pathways are poorly understood. Gene Ontology categories and Kyoto Encyclopedia of Genes and Genomes pathways enriched in the differentially expressed genes (DEGs) were analyzed by using clusterProfiler, org.Hs.eg.db, and Pathview, and protein-protein interaction (PPI) network was built by Cytoscape. We identified 3432 DEGs (including 3368 down- and 64 up-regulated genes), of which there were 52 different molecular functions, and 178 genes were identified as immune genes controlled by the four transcription factors (POU domain class 6 transcription factor 1 (POU6F1), interferon regulator factor 7 [IRF7], forkhead box D3 (FOXD3), and interferon-stimulated response element [ISRE]). In the gender research, no significant difference was observed. The top 15 proteins of 178 immune-related genes were identified with the highest degree in PPI network. The DEG analysis of uremia patients was expected to provide fundamental information to relieve pain and add years to their life.
Collapse
|
5
|
Liu R, Sun Y, Chen S, Hong Y, Lu Z. FOXD3 and GAB2 as a pair of rivals antagonistically control hepatocellular carcinogenesis. FEBS J 2022; 289:4536-4548. [DOI: 10.1111/febs.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/05/2021] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Ruimin Liu
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Yan Sun
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Shuai Chen
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Yun Hong
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Sciences Xiamen China
| |
Collapse
|
6
|
Li H, Li G, Xu P, Li Z. B cells and tumor immune escape. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:358-363. [PMID: 35545329 PMCID: PMC10930053 DOI: 10.11817/j.issn.1672-7347.2022.210275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 06/15/2023]
Abstract
B lymphocyte is an important component of the human immune system and it has a role in the process of the body's specific immunity. In recent years, the research on B cells and tumor immune escape has rapidly progressed. Studies have shown that different types of B cells play different roles in tumor microenvironment through a variety of mechanisms. B cells in the tertiary lymphatic structure promote anti-tumor immunity, while regulatory B cells promote tumor immune escape. Antibody drugs targeting B cells are a promising direction for tumor immunotherapy.
Collapse
Affiliation(s)
- Huiting Li
- Cancer Research Institute, Central South University, Changsha 410078.
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Changsha 410078
| | - Ping Xu
- Departments of Respiratory and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen Guangdong 518036, China
| | - Zheng Li
- Cancer Research Institute, Central South University, Changsha 410078.
| |
Collapse
|
7
|
Kwak MJ, Ha DJ, Choi YS, Lee H, Whang KY. Protective and restorative effects of sophorolipid on intestinal dystrophy in dextran sulfate sodium-induced colitis mouse model. Food Funct 2022; 13:161-169. [PMID: 34874374 DOI: 10.1039/d1fo03109k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The public has gradually begun to regard inflammatory bowel disease (IBD) as a crucial health issue; however, its mode of action has not been fully elucidated. Sophorolipid (SPL), a glycolipid-type biosurfactant, could be used as a potential treatment in physical intestinal dystrophy. We conducted a 2 × 2 factorial experiment to investigate the protective effect of SPL in a dextran sulfate sodium (DSS)-induced colitis mouse model (first factor, presence of SPL in feed; second factor, presence of DSS in water). Forty C57BL/6 mice (8-week-old) were used, and they were allocated to treatments according to their initial body weight. After a 7 d adjustment period, the DSS treatment was initiated in specific groups. At day 14, DSS was withdrawn from mice, and half of the mice were randomly selected and euthanized to collect colon and colon content samples. Three days after the end of DSS treatment, the rest of the mice were euthanized to investigate the therapeutic effect of SPL. Dietary SPL improved the growth performance in 3 d after DSS treatment, and the histopathological score was lower in the DSS-treated SPL group than in the DSS-treated control group. Mucosal thickness and goblet cell numbers significantly increased in the SPL-supplemented groups compared to in the control group. Similarly, SPL supplementation upregulated the gene expression levels of mucin-2, interleukin-10, and transforming growth factor-β, and increased the concentration of short chain fatty acid compared to the control groups. In conclusion, dietary supplementation with SPL attenuated the pathological response against acute and chronic inflammation by the maintenance of the mucosal barrier and wound healing capacity.
Collapse
Affiliation(s)
- Min-Jin Kwak
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea. .,Division of Interdisciplinary Program in Precision Public Health (BK21 FOUR Program), Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Jin Ha
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Yong-Soon Choi
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Hanbae Lee
- Pathway Intermediates, Seoul 02841, Republic of Korea.
| | - Kwang-Youn Whang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Foury A, Collin A, Helbling JC, Leterrier C, Moisan MP, Guilloteau LA. Spontaneous intake of essential oils after a negative postnatal experience has long-term effects on blood transcriptome in chickens. Sci Rep 2020; 10:20702. [PMID: 33244117 PMCID: PMC7691513 DOI: 10.1038/s41598-020-77732-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Chicks subjected to early stressful factors could develop long-lasting effects on their performances, welfare and health. Free access to essential oils (EO) in poultry farming could mitigate these effects and potentially reduce use of antimicrobial drugs. This study on chicken analyzed long-lasting effects of post-hatch adverse conditions (Delayed group), and the impact of EO intake on blood physiological parameters and transcriptome. Half of the Control and Delayed groups had free access to EO, while the other half had only water for the first 13 days post-hatching. Blood analyses of metabolites, inflammation and oxidative stress biomarkers, and mRNA expression showed sex differences. Long-lasting effects of postnatal experience and EO intake persisted in blood transcriptome at D34. The early adverse conditions modified 68 genes in males and 83 genes in females. In Delayed males six transcription factors were over-represented (NFE2L2, MEF2A, FOXI1, Foxd3, Sox2 and TEAD1). In females only one factor was over-represented (PLAG1) and four under-represented (NFIL3, Foxd3, ESR2 and TAL1::TCF3). The genes showing modified expression are involved in oxidative stress, growth, bone metabolism and reproduction. Remarkably, spontaneous EO intake restored the expression levels of some genes affected by the postnatal adverse conditions suggesting a mitigating effect of EO intake.
Collapse
Affiliation(s)
- Aline Foury
- INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University Bordeaux, 33076, Bordeaux, France
| | - Anne Collin
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | | | | | - Marie-Pierre Moisan
- INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University Bordeaux, 33076, Bordeaux, France
| | | |
Collapse
|
10
|
He Y, Xu R, Zhai B, Zhou S, Wang X, Wang R. Gm614 Protects Germinal Center B Cells From Death by Suppressing Caspase-1 Transcription in Lupus-Prone Mice. Front Immunol 2020; 11:585726. [PMID: 33193409 PMCID: PMC7609865 DOI: 10.3389/fimmu.2020.585726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
Only a few signaling pathways have been reported in germinal center (GC) B-cell proliferation and death. In this study, we showed that a novel uncharacterized Gm614 protein is highly expressed in GC B cells from lupus-prone mice. Critically, ablation of this GC B-cell-specific Gm614 promoted GC B-cell death and mitigation of autoimmune symptoms, whereas overexpression protected GC B cells from death and exacerbated autoimmune symptoms. We demonstrated that mechanistically, nuclear-localized Gm614 reduced caspase-1 expression in GC B cells by binding with caspase-1 promoter to suppress its activation. Our results suggest that Gm614 protects GC B cells from death by suppressing caspase-1 transcription in autoimmune diseases. This may provide some hints for targeting the cell proliferation involved in autoimmune diseases.
Collapse
Affiliation(s)
- Youdi He
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ruonan Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Bing Zhai
- Department of Geriatric Hematology, Nanlou Division, Chinese People’s Liberation Army of China General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Sakkas LI, Daoussis D, Mavropoulos A, Liossis SN, Bogdanos DP. Regulatory B cells: New players in inflammatory and autoimmune rheumatic diseases. Semin Arthritis Rheum 2019; 48:1133-1141. [PMID: 30409417 DOI: 10.1016/j.semarthrit.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulatory B cells (Bregs) are a new subset of B cells with immunoregulatory functions, mainly through IL-10 production. Bregs suppress inflammatory Th1 and Th17 differentiation and induce Tregs suppressing autoimmune diseases. The aim of the study was to review the literature related to Bregs in autoimmune rheumatic diseases (ARDs). METHODS A literature review of publications in PUBMED published in English was performed using the relevant combinations of terms. RESULTS All relevant publications are discussed. Overall, recent studies in rheumatic diseases found Bregs to be decreased in ANCA-associated vasculitides (AAV) and in systemic sclerosis (SSc), particularly in SSc-associated lung fibrosis. In AAV Bregs levels are negatively correlated with autoantibody levels whereas in SSc this association is less clear but there is an inverse association with Th1 and Th17 cells. In rheumatoid arthritis (RA), Bregs were decreased, particularly in RA-associated lung fibrosis. In psoriatic arthritis IL-10 + Bregs are decreased and inversely associated with Th1 and Th17 cells. In systemic lupus erythematosus (SLE), the role of Bregs is unclear. In experimental diseases, when Bregs were expanded ex-vivo, they ameliorated established disease. CONCLUSION Bregs appear to be a new player in the pathogenesis of ARDs, and may offer a new strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece.
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| |
Collapse
|
12
|
Ma N, Fang Y, Xu R, Zhai B, Hou C, Wang X, Jiang Z, Wang L, Liu Q, Han G, Wang R. Ebi3 promotes T- and B-cell division and differentiation via STAT3. Mol Immunol 2019; 107:61-70. [PMID: 30660991 DOI: 10.1016/j.molimm.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
Abstract
Although sharing the same subunit Ebi3, IL-27 (p28/Ebi3) and IL-35 (p35/Ebi3) have different biological functions, suggesting that Ebi3 subunit may functions as a carrier. Our data demonstrated that activated T cells and B cells effectively up-regulated Ebi3 expression. In addition, Ebi3 effectively promoted T-cell activation and the differentiation of helper T 1 (Th1), Th17, and Foxp3+ regulatory T (Treg) cells induced by Th1, Th17, and Treg polarizing condition, respectively. Naturally, Ebi3 could promote B-cell activation and the production of CD138+ plasma cells (PC) induced by LPS. Conversely, neutralizing anti-Ebi3 antibody could significantly suppress T/B-cell activation and production of Th1, Th17, Tregs, and PC induced by Th1, Th17, Treg polarizing condition, and LPS, respectively. Furthermore, we found that Ebi3 time-dependently induced STAT3 activation in CD4+T cells and B cells. Conversely, STAT3-/- effectively reduced Ebi3 expression and the production of Th1, Th17, Tregs, and plasma cells. Finally, we showed that gp130 but not IL-27Rα mediates Ebi3-induced STAT3 activation. These results suggest that Ebi3 promotes Th- and B-cell differentiation via gp130-STAT3 signaling pathway. Thus, autocrine Ebi3 may play an important role in the differentiation of Th and B cells and thus in infection, inflammation, and autoimmune disorders.
Collapse
Affiliation(s)
- Ning Ma
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Ying Fang
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China; Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruonan Xu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Bing Zhai
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing 100176, China
| | - Zhenyu Jiang
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
13
|
Bendorius M, Po C, Muller S, Jeltsch-David H. From Systemic Inflammation to Neuroinflammation: The Case of Neurolupus. Int J Mol Sci 2018; 19:E3588. [PMID: 30428632 PMCID: PMC6274746 DOI: 10.3390/ijms19113588] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
It took decades to arrive at the general consensus dismissing the notion that the immune system is independent of the central nervous system. In the case of uncontrolled systemic inflammation, the relationship between the two systems is thrown off balance and results in cognitive and emotional impairment. It is specifically true for autoimmune pathologies where the central nervous system is affected as a result of systemic inflammation. Along with boosting circulating cytokine levels, systemic inflammation can lead to aberrant brain-resident immune cell activation, leakage of the blood⁻brain barrier, and the production of circulating antibodies that cross-react with brain antigens. One of the most disabling autoimmune pathologies known to have an effect on the central nervous system secondary to the systemic disease is systemic lupus erythematosus. Its neuropsychiatric expression has been extensively studied in lupus-like disease murine models that develop an autoimmunity-associated behavioral syndrome. These models are very useful for studying how the peripheral immune system and systemic inflammation can influence brain functions. In this review, we summarize the experimental data reported on murine models developing autoimmune diseases and systemic inflammation, and we explore the underlying mechanisms explaining how systemic inflammation can result in behavioral deficits, with a special focus on in vivo neuroimaging techniques.
Collapse
Affiliation(s)
- Mykolas Bendorius
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| | - Chrystelle Po
- ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg, 67000 Strasbourg, France.
| | - Sylviane Muller
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
| | - Hélène Jeltsch-David
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| |
Collapse
|
14
|
Xu R, Fang Y, Hou C, Zhai B, Jiang Z, Ma N, Wang L, Han G, Wang R. BC094916 suppressed SP 2/0 xenograft tumor by down-regulating Creb1 and Bcl2 transcription. Cancer Cell Int 2018; 18:138. [PMID: 30220882 PMCID: PMC6137751 DOI: 10.1186/s12935-018-0635-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023] Open
Abstract
Background Both multiple myeloma (MM) and systemic lupus erythematosus (SLE) are associated with abnormal production of plasma cells, although their pathological mechanism of each disease is different. The main characteristic of both diseases is uncontrolled differentiation of B cells into plasmablast/plasma cells. Despite continuous research on prognostic factors and the introduction of new agents for MM and SLE, treatments still do not exist for controlling plasmablast/plasma cells. Thus, it is necessary to identify novel therapeutic targets of plasmablast/plasma cells. Because of its plasmablast-like characteristics, the mus musculus myeloma SP 2/0 cell line was used in this study to test the effect of a novel therapeutic agent (BC094916 overexpression) on plasmablast/plasma cells. Methods We first determined gene expression profiles of plasma cells using Affymetrix microarrays and RNA-sequencing. The effect of BC094916 on SP 2/0 cell proliferation, cell cycle, and apoptosis was determined by CCK8 and fluorescence-activated cell sorting. The SP 2/0 xenograft mouse model was used to assess the impact of BC094916 on tumor progression. The luciferase reporter system was used to evaluate the effect of BC094916 on Creb1 and Bcl2 transcription. Results We found that BC094916 mRNA was decreased in plasma cells. The mouse myeloma cell line SP 2/0 expressed low levels of BC094916 mRNA, whereas BC094916 overexpression suppressed SP 2/0 cell proliferation by inducing apoptosis. BC094916 overexpression suppressed tumor progression in the SP 2/0 xenograft mouse model. We also found that BC094916 mediate apoptosis by suppressing transcription of the Creb1 and Bcl2 genes, which promote the transcription of eukaryotic translation initiation and elongation factor genes. Conclusions BC094916 overexpression suppressed Creb1 and Bcl2 transcription to induce cell apoptosis, which suppressed SP 2/0 proliferation and xenograft tumor progression. Thus, BC094916 overexpression may be a potential therapeutic agent for treatment of MM and autoimmune diseases such as SLE.
Collapse
Affiliation(s)
- Ruonan Xu
- 1College of Life Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China.,2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China
| | - Ying Fang
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China.,3Department of Rheumatology, First hospital of Jilin University, Changchun, 130021 China
| | - Chunmei Hou
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China
| | - Bing Zhai
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China.,4Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zhenyu Jiang
- 3Department of Rheumatology, First hospital of Jilin University, Changchun, 130021 China
| | - Ning Ma
- 3Department of Rheumatology, First hospital of Jilin University, Changchun, 130021 China
| | - Liang Wang
- 1College of Life Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - Gencheng Han
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China
| | - Renxi Wang
- 2Laboratory of Immunology, Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road #27, Beijing, 100850 China
| |
Collapse
|
15
|
Zhu G, Liu X, Fang Y, Zhai B, Xu R, Han G, Chen G, Xiao H, Hou C, Shen B, Li Y, Iwakura Y, Wang L, Jiang Z, Ma N, Liu G, Wang R. Increased mTOR cancels out the effect of reduced Xbp-1 on antibody secretion in IL-1α-deficient B cells. Cell Immunol 2018; 328:9-17. [DOI: 10.1016/j.cellimm.2018.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/05/2018] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
|
16
|
Zhu G, Wang X, Xiao H, Liu X, Fang Y, Zhai B, Xu R, Han G, Chen G, Hou C, Shen B, Li Y, Ma N, Wu H, Liu G, Wang R. Both Notch1 and its ligands in B cells promote antibody production. Mol Immunol 2017; 91:17-23. [PMID: 28863329 DOI: 10.1016/j.molimm.2017.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023]
Abstract
Notch1 signaling regulates B and T lymphocyte development and also in vitro promotes antibody secretion upon B cell activation. However, it is still unclear about the role of Notch1 in antibody production upon in vitro and in vivo mixture lymphocytes activation. We first showed that Notch1 expressed in LPS-activated CD19hi B cells and CD19cre mediated Notch1 knock-down in LPS-activated B cells. Furthermore, we demonstrated that Notch1 knock-down in B cells reduced antibody production in LPS-stimulated B cells but did not affect antibody production in LPS-stimulated splenocytes and in experimental allergic encephalomyelitis (EAE) mice. Importantly, Notch1 ligands Dll1 and Jag1 expressed in B cells and pre-coated Notch1 protein promotes Notch1-knocked down B cells to produce antibody in LPS-stimulated B cells suggesting that Notch1 in other cells may promote antibody production by binding its ligands Dll1 and Jag1 in B cells. Together, our results suggest that both Notch1 and its ligands in B cells play an important role in antibody production.
Collapse
Affiliation(s)
- Gaizhi Zhu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xiaoqian Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; Department of Nephrology, The 307th Hospital of Chinese People's Liberation Army, Beijing 100850, China
| | - Ying Fang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Bing Zhai
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruonan Xu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ning Ma
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Haitao Wu
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing, China.
| | - Guangchao Liu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
17
|
Zhang Y, Zhu G, Xiao H, Liu X, Han G, Chen G, Hou C, Shen B, Li Y, Ma N, Wang R. CD19 regulates ADAM28-mediated Notch2 cleavage to control the differentiation of marginal zone precursors to MZ B cells. J Cell Mol Med 2017; 21:3658-3669. [PMID: 28707394 PMCID: PMC5706524 DOI: 10.1111/jcmm.13276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
As the first line of defence, marginal zone (MZ) B cells play principal roles in clearing blood‐borne pathogens during infection and are over‐primed in autoimmune diseases. However, the basic mechanisms underlying MZ B‐cell development are still unclear. We found here that CD19 deficiency blocked the differentiation of marginal zone precursors (MZP) to MZ B cells, whereas CD19 expression in CD19‐deficient MZP rescues MZ B‐cell generation. Furthermore, CD19 regulates Notch2 cleavage by up‐regulating ADAM28 expression in MZP. Finally, we found that CD19 suppressed Foxo1 expression to promote ADAM28 expression in MZP. These results suggest that CD19 controls the differentiation of MZP to MZ B cells by regulating ADAM28‐mediated Notch2 cleavage. Thus, we demonstrated the basic mechanisms underlying the differentiation of MZP to MZ B cells.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,College of Pharmacy, Henan University, Kaifeng, China
| | - Gaizhi Zhu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Nephrology, The 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Liu S, Lian S, Yang Y, Fu C, Ma H, Xiong Z, Ling Y, Zhao C. The relationship between the variants in the 5'-untranslated regions of equine chorionic gonadotropin genes and serum equine chorionic gonadotropin levels. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1679-1683. [PMID: 28423874 PMCID: PMC5666169 DOI: 10.5713/ajas.17.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 11/27/2022]
Abstract
Objective An experiment was conducted to study the association between the single nucleotide polymorphisms (SNPs) in 5′-untranslated regions (5′-UTR) of equine chorionic gonadotropin (eCG) genes and the serum eCG levels. Methods SNPs in 5′-UTR of eCG genes were screened across 10 horse breeds, including 7 Chinese indigenous breeds and 3 imported breeds using iPLEX chemistry, and the association between the serum eCG levels of 174 pregnant Da’an mares and their serum eCG levels (determined with ELISA) was analyzed. Results Four SNPs were identified in the 5′-UTR of the eCGα gene, and one of them was unique in the indigenous breeds. There were 2 SNPs detected at the 5′ end of the eCGβ subunit gene, and one of them was only found in the Chinese breeds. The SNP g.39948246T>C at the 5′-UTR of eCGα was associated significantly with eCG levels of 75-day pregnant mare serum (p<0.05) in Da’an mares. Prediction analysis on binding sites of transcription factors showed that the g.39948246T>C mutation causes appearance of the specific binding site of hepatocyte nuclear factor 3 forkhead homolog 2 (HFH-2), which is a transcriptional repressor belonging to the forkhead protein family of transcription factors. Conclusion The SNP g.39948246T>C at the 5′-UTR of eCGα is associated with eCG levels of 75-day pregnant mare serum (p<0.05).
Collapse
Affiliation(s)
- ShuQin Liu
- Equine Center, China Agricultural University, Beijing 100193, China
| | - Song Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - YunZhou Yang
- Equine Center, China Agricultural University, Beijing 100193, China
| | - ChunZheng Fu
- Equine Center, China Agricultural University, Beijing 100193, China
| | - HongYing Ma
- Equine Center, China Agricultural University, Beijing 100193, China
| | - ZhiYao Xiong
- Equine Center, China Agricultural University, Beijing 100193, China
| | - Yao Ling
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - ChunJiang Zhao
- Equine Center, China Agricultural University, Beijing 100193, China.,College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, 100193, China.,National Engineering Laboratory for Animal Breeding, Beijing 100193, China
| |
Collapse
|