1
|
Hooda V, Khandpur S, Sharma A. Augmented IFNγ producing ILC1 and IL 17 producing ILC3 in pemphigus vulgaris: Plausible therapeutic target. Cell Immunol 2025; 408:104910. [PMID: 39718308 DOI: 10.1016/j.cellimm.2024.104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Innate Lymphoid cells (ILCs) are innate counterparts of helper T cells. Although low in number, they have proven to play major roles in many autoimmune diseases. In Pemphigus Vulgaris (PV), the gaps in the knowledge of functional role of ILCs remain. To bridge the gap, our study investigated the phenotype along with the functional determinants of ILCs involved in PV immunopathogenesis. Our data suggested augmentation in overall ILC population in circulation of PV patients. Specifically, ILC1 and ILC3 subtypes were significantly increased in peripheral circulation of PV patients compared to healthy controls. We observed no changes in ILC2 population. mRNAs from ILC enriched population showed significant upregulation in transcription factors- ID2, T bet and RORγt and a downregulation in GATA3 and RORα. The mRNA levels of ILC related cytokines- IFNγ and IL17 were significantly upregulated while no change was observed in the levels of IL13, IL 22, AHR. The levels of autoantibodies against desmoglein (Dsg) 3 which is the characteristic of PV pathogenesis were also checked in the serum which confirmed significant upregulation in PV patients. The levels of proinflammatory- IFNγ, IL 17 and IL 15 were elevated and anti-inflammatory cytokines- IL10 was downregulated in the serum of PV patients. The results of this study offer insights into the functional attributes of ILCs and related cytokines, potentially contributing to the development of future therapeutic interventions.
Collapse
Affiliation(s)
| | - Sujay Khandpur
- Department of Dermatology and Venereology, AIIMS, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, AIIMS, New Delhi, India.
| |
Collapse
|
2
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Hooda V, Khandpur S, Arava S, Sharma A. Distorted frequency and functionality of natural killer cells in pemphigus vulgaris: A potential therapeutic target. Immunol Lett 2024; 269:106900. [PMID: 39032911 DOI: 10.1016/j.imlet.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Pemphigus vulgaris (PV) is a rare autoimmune disorder where autoantibodies target the desmosomal proteins resulting in blistering of oral mucosa and skin. While the pathogenesis of PV is mainly mediated by the adaptive immune system, key players of innate immunity are also emerging. This study outlines the phenotypic as well as functional attributes of NK cells in PV. Through in-depth analysis using flow cytometry we identified an increase in the frequency of CD56+ CD3- NK cells and their subtypes in periphery. Along with this there is an increased frequency of IFNγ+ CD56bright CD16dim NK cells. mRNA expression of sorted NK cells for differentially expressed genes, particularly key transcription factors such as T-bet and EOMES, as well as surface receptors like NKG2D and KIR2D, and the cytokine IFNγ, displayed significant upregulation. A significant activation of NK cells was seen in the disease state. The levels of perforin and IFNγ were significantly elevated in the culture supernatants of patients. Additionally, a significantly higher cytotoxicity of NK cells in PV was observed. In lesioned tissues of PV, NK related markers were significantly increased. Lastly, we observed NK cells using confocal microscopy in the tissue biopsies of patients which showed significant infiltration of CD56+ CD3- NK cells at the lesional sites. This study aimed to shed light on the pivotal role of NK cells in the immunopathology of PV, offering a thorough understanding of their behaviour and changes in expression which might help in contributing to the development of novel therapeutics.
Collapse
Affiliation(s)
| | - Sujay Khandpur
- Department of Dermatology and Venereology, AIIMS, New Delhi, India
| | | | - Alpana Sharma
- Department of Biochemistry, AIIMS, New Delhi, India.
| |
Collapse
|
4
|
Duan S, Li Q, Wang F, Kuang W, Dong Y, Liu D, Wang J, Li W, Chen Q, Zeng X, Li T. Single-Cell Transcriptomes and Immune Repertoires Reveal the Cell State and Molecular Changes in Pemphigus Vulgaris. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:375-388. [PMID: 38117802 DOI: 10.4049/jimmunol.2300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/05/2023] [Indexed: 12/22/2023]
Abstract
The etiology and pathogenesis of pemphigus vulgaris (PV) entail intricate interactions between immune cells and epithelial cells. However, the specific subtypes of immune cells involved in PV, along with their respective roles, remain elusive. Likewise, the precise functions and mechanisms by which glucocorticoids affect cell types within the disease context require further elucidation. To address these knowledge gaps, we performed 5' single-cell RNA sequencing, combined with V(D)J enrichment on buccal mucosal lesions and peripheral blood samples from treatment-naive patients with PV, in conjunction with post-treatment peripheral blood samples obtained after oral prednisone treatment. Our findings suggest that the IL-1α signaling pathway, myeloid APCs, inflammatory CD8+ resident memory T cells, and dysfunctional CD4+ regulatory T cells are involved in the pathogenesis of PV. Part of these findings were validated by immunohistochemical assays and multiplex immunofluorescence assays. Furthermore, our results highlight the significant impact of prednisone treatment on monocytes and mucosal-associated invariant T cells while revealing a limited effect on CD4+ regulatory T cells. Additionally, we present the CDR3 amino acid sequence of BCR related to PV disease and investigate the characteristics of TCR/BCR clonotypes. In conclusion, our study provides a comprehensive understanding of PV, particularly focusing on the mucosal-dominant type, and sheds light on the effects of glucocorticoids within the PV context. These insights hold promise for the development of new therapeutic strategies in this autoimmune disorder.
Collapse
Affiliation(s)
- Shumin Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qionghua Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Kuang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yunmei Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Das D, Arava S, Khandpur S, Santosh KV, Akhtar S, Sharma A. Dominance and improved survivability of human γδT17 cell subset aggravates the immunopathogenesis of pemphigus vulgaris. Immunol Res 2024; 72:72-81. [PMID: 37620509 DOI: 10.1007/s12026-023-09413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Human γδ T cells are highly enriched in epithelial cell-dominated compartments like skin. Nonetheless, their function in the pathogenesis of pemphigus vulgaris (PV), an autoimmune skin disorder, is lacking. Therefore, we investigated the functional expression of human γδT cell subsets along with their homing chemokine receptor-ligand and inflammatory cytokines in the immunopathogenesis of PV. Estimation of the frequency of γδT cell subsets by flow cytometry revealed four major subsets of γδ T cells (γδT1, γδT2, γδT17, γδTreg) in both control and PV circulation. The elevated frequency of γδT17 cells producing IL17 and expressing CCR6 receptor suggests their inflammatory and migratory potential in PV. In vitro culture of γδ T cells from patients showed increased mRNA expression of inflammatory cytokines IL17, RORγt, IL23, IL1, and co-stimulatory markers, CD27 and CD70. These findings correlated the role of IL1 and IL23 cytokines that alleviate the Th17 population in PV. Cytotoxic activities of γδ T cells were higher and inflammatory γδT17 cells were localized in the skin of PV whereas γδTreg cells associated TGFβ and FOXP3 were lowered. Hyperinflammatory phenotype of the γδT17 cell subset and its migratory potential might be aiding in the pathogenesis of PV, whereas γδTreg cells fail to suppress these inflammatory responses. Hence, γδT17 cell-associated markers can be targeted for identifying novel therapeutics in PV.
Collapse
Affiliation(s)
- Dayasagar Das
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - K V Santosh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shamima Akhtar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
6
|
Araghi F, Dadkhahfar S, Robati RM, Tabary M, Shahidi-Dadras M. The emerging role of T cells in pemphigus vulgaris: a systematic review. Clin Exp Med 2023; 23:1045-1054. [PMID: 35925475 DOI: 10.1007/s10238-022-00855-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Pemphigus vulgaris is a potential life-threatening autoimmune bullous disorder. The significant role of autoreactive B cells in the pathogenesis of PV has been explained extensively by producing autoantibodies. Recently, attention has been directed toward the role of T cells in the pathogenesis of PV; in other words, the underlying etiology of PV depends on the interaction between T cells and B cells resulting in antibody secretion. Herein, we systematically review the current literature on the emerging role of T cells in PV. To perform this systematic review, an extensive search through EMBASE, PubMed, Scopus, and ISI databases was performed from 1976 through 2021. Articles investigating the function of T cell subgroups in the pathogenesis or treatment of pemphigus vulgaris were included and reviewed. It is evidenced that T cells play a pivotal role in PV pathogenesis. Th1 and Th2 dichotomy including Th1 suppression and Th2 elevation may induce antibody production against desmoglein in keratinocytes. Furthermore, increased level of Th17 and decreased level of regulatory T cells have been detected in PV patients. However, further studies on the exact role of γδ-T cells in PV are required in order to clarify the pathogenesis of PV. T cells and their subtypes can be involved in the pathogenesis of PV. Thus, they can be considered as tentative targets of novel therapies for PV.
Collapse
Affiliation(s)
- Farnaz Araghi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Dadkhahfar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
7
|
Niebuhr M, Bahreini F, Fähnrich A, Bomholt C, Bieber K, Schmidt E, Ibrahim S, Hammers CM, Kalies K. Analysis of T cell repertoires of CD45RO CD4 T cells in cohorts of patients with bullous pemphigoid: A pilot study. Front Immunol 2022; 13:1006941. [DOI: 10.3389/fimmu.2022.1006941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Autoimmune diseases develop over years - starting from a subclinical phenotype to clinically manifest autoimmune disease. The factors that drive this transition are ill-defined. To predict the turning point towards clinical disease and to intervene in the progress of autoimmune-mediated dysfunction, the establishment of new biomarkers is needed. Especially CD4 T cells are crucially involved in autoimmunity: first, during the initiation phase, because they lose their tolerance towards self-peptides, and second, by the subsequent ongoing presentation of self-peptides during the active autoimmune disease. Accordingly, changes in the degree of diversity of T cell receptor (TCR) repertoires in autoimmunity have been reported. These findings led to the hypothesis that transition from pre-disease to autoimmune disease is associated with an increase of abnormally expanded T cell clones that occupy large portions of the TCR repertoire. In this pilot study, we asked whether the ratio and the diversity of the TCR repertoires of circulating memory (CD45RO) and naïve (CD45RA) CD4 T cells could serve as a predictive factor for the development of autoimmunity. To find out, we analyzed the TCRβ repertoires of memory and naïve CD4 T cells in a small cohort of four gender- and age-matched elderly patients having the autoimmune blistering disease bullous pemphigoid or non-melanoma skin cancers. We found that the extent of clonal expansions in the TCRβ repertoires from the circulating memory and naïve CD4 populations did not differ between the patient groups. This result shows that the diversity of TCR repertoires from peripheral CD4 T cells does not reflect the manifestation of the skin-associated autoimmune disease BP and does not qualify as a prognostic factor. We propose that longitudinal TCR repertoire analysis of younger patients might be more informative.
Collapse
|
8
|
Liu N, Feng G, Zhang X, Hu Q, Sun S, Sun J, Sun Y, Wang R, Zhang Y, Wang P, Li Y. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease. Front Nutr 2021; 8:759507. [PMID: 34901112 PMCID: PMC8655231 DOI: 10.3389/fnut.2021.759507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is one of the main types of intestinal inflammatory diseases with intestine mucosal immune disorder. Intestine mucosal immune system plays a remarkable and important role in the etiology and pathogenesis of IBD. Therefore, understanding the intestine mucosal immune mechanism is a key step to develop therapeutic interventions for IBD. Intestine mucosal immune system and IBD are influenced by various factors, such as inflammation, gut permeability, gut microbiota, and nutrients. Among these factors, emerging evidence show that nutrients play a key role in inflammation activation, integrity of intestinal barrier, and immune cell modulation. Lactoferrin (LF), an iron-binding glycoprotein belonging to transferrin family, is a dietary bioactive component abundantly found in mammalian milk. Notably, LF has been reported to perform diverse biological functions including antibacterial activity, anti-inflammatory activity, intestinal barrier protection, and immune cell modulation, and is involved in maintaining intestine mucosal immune homeostasis. The improved understanding of the properties of LF in intestine mucosal immune system and IBD will facilitate its application in nutrition, clinical medicine, and health. Herein, this review outlines the recent advancements on LF as a potential therapeutic intervention for IBD associated with intestine mucosal immune system dysfunction. We hope this review will provide a reference for future studies and lay a theoretical foundation for LF-based therapeutic interventions for IBD by understanding the particular effects of LF on intestine mucosal immune system.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Gang Feng
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Qingjuan Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jiaqi Sun
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Uchida Y, Gherardini J, Pappelbaum K, Chéret J, Schulte-Mecklenbeck A, Gross CC, Strbo N, Gilhar A, Rossi A, Funk W, Kanekura T, Almeida L, Bertolini M, Paus R. Resident human dermal γδT-cells operate as stress-sentinels: Lessons from the hair follicle. J Autoimmun 2021; 124:102711. [PMID: 34479087 DOI: 10.1016/j.jaut.2021.102711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 01/03/2023]
Abstract
Murine γδT-cells have stress-surveillance functions and are implicated in autoimmunity. Yet, whether human γδT-cells are also stress sentinels and directly promote autoimmune responses in the skin is unknown. Using a novel (mini-)organ assay, we tested if human dermis resident γδT-cells can recognize stressed human scalp hair follicles (HFs) to promote an alopecia areata (AA)-like autoimmune response. Accordingly, we show that γδT-cells from healthy human scalp skin are activated (CD69+), up-regulate the expression of NKG2D and IFN-γ, and become cytotoxic when co-cultured with autologous stressed HFs ex vivo. These autologous γδT-cells induce HF immune privilege collapse, dystrophy, and premature catagen, i.e. three hallmarks of the human autoimmune HF disorder, AA. This is mediated by CXCL12, MICA, and in part by IFN-γ and CD1d. In conclusion, human dermal γδT-cells exert physiological stress-sentinel functions in human skin, where their excessive activity can promote autoimmunity towards stressed HFs that overexpress CD1d, CXCL12, and/or MICA.
Collapse
Affiliation(s)
- Youhei Uchida
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jennifer Gherardini
- Monasterium Laboratory, Münster, Germany; Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | | | - Jérémy Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Amos Gilhar
- Skin Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alfredo Rossi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, University ''La Sapienza'', Rome, Italy
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. Med. Funk, Munich, Germany
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | - Ralf Paus
- Monasterium Laboratory, Münster, Germany; Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Centre for Dermatology Research, University of Manchester, MAHSC, And Manchester NIHR Biomedical Research Centre, Manchester, UK.
| |
Collapse
|
10
|
Sea-Buckthorn Seed Oil Induces Proliferation of both Normal and Dysplastic Keratinocytes in Basal Conditions and under UVA Irradiation. J Pers Med 2021; 11:jpm11040278. [PMID: 33917064 PMCID: PMC8067731 DOI: 10.3390/jpm11040278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/19/2022] Open
Abstract
Past decades demonstrate an increasing interest in herbal remedies in the public eye, with as many as 80% of people worldwide using these remedies as healthcare products, including those for skin health. Sea buckthorn and its derived products (oil; alcoholic extracts), rich in flavonoids and essential fatty acids, are among these healthcare products. Specifically, sea buckthorn and its derivatives are reported to have antioxidant and antitumor activity in dysplastic skin cells. On the other hand, evidence suggests that the alteration of lipid metabolism is related to increased malignant behavior. Given the paradoxical involvement of lipids in health and disease, we investigated how sea-buckthorn seed oil, rich in long-chain fatty acids, modifies the proliferation of normal and dysplastic skin cells in basal conditions, as well as under ultraviolet A (UVA) radiation. Using real-time analysis of normal and dysplastic human keratinocytes, we showed that sea-buckthorn seed oil stimulated the proliferation of dysplastic cells, while it also impaired the ability of both normal and dysplastic cells to migrate over a denuded area. Furthermore, UVA exposure increased the expression of CD36/SR-B2, a long-chain fatty acid translocator that is related to the metastatic behavior of tumor cells.
Collapse
|
11
|
Fang H, Li Q, Wang G. The role of T cells in pemphigus vulgaris and bullous pemphigoid. Autoimmun Rev 2020; 19:102661. [DOI: 10.1016/j.autrev.2020.102661] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/28/2022]
|
12
|
Uchida Y, Gherardini J, Schulte-Mecklenbeck A, Alam M, Chéret J, Rossi A, Kanekura T, Gross CC, Arakawa A, Gilhar A, Bertolini M, Paus R. Pro-inflammatory Vδ1 +T-cells infiltrates are present in and around the hair bulbs of non-lesional and lesional alopecia areata hair follicles. J Dermatol Sci 2020; 100:129-138. [PMID: 33039243 DOI: 10.1016/j.jdermsci.2020.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is widely accepted that NKG2D+cells are critically involved in alopecia areata (AA) pathogenesis. However, besides being expressed in CD8+T-cells and NK cells, NKG2D is also found in human γδT-cells. AA lesional hair follicles (HFs) overexpress NKG2D and γδTCR activating ligands, e.g. MICA and CD1d, and chemoattractants for γδT-cells, such as CXCL10. OBJECTIVE To investigate whether abnormal activities of γδT-cells may be involved in AA pathogenesis. METHODS We analyzed the number and activation status of γδT-cells in human healthy, lesional and non-lesional AA scalp biopsies by FACS and/or quantitative (immuno-)histomorphometry. RESULTS In healthy human scalp skin, the few skin-resident γδT-cells were found to be mostly Vδ1+, non-activated (CD69-NKG2Ddim) and positive for CXCL10, and CXCL12 receptors. These Vδ1+T-cells predominantly localized in/around the HF infundibulum. In striking contrast, the number of Vδ1+T-cells was significantly higher around and even inside the proximal (suprabulbar and bulbar) epithelium of lesional AA HFs. These cells also showed a pro-inflammatory phenotype, i.e. higher NKG2D, and IFN-γ and lower CD200R expression. Importantly, more pro-inflammatory Vδ1+T-cells were seen also around non-lesional AA HFs. Lesional AA HFs also showed significantly higher expression of CXCL12. CONCLUSION Our pilot study introduces skin-resident γδT-cells as a previously overlooked, but potentially important, mostly (auto-)antigen-independent, new innate immunity protagonist in AA pathobiology. The HF infiltration of these activated, IFN-γ-releasing cells already around non-lesional AA HFs suggest that Vδ1+T-cells are involved in the early stages of human AA pathobiology, and may thus deserve therapeutic targeting for optimal AA management.
Collapse
Affiliation(s)
- Youhei Uchida
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jennifer Gherardini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany; Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology & Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Majid Alam
- Department of Dermatology & Venereology, Hamad Medical Corporation & Translational Research Institute, Academic Health System, Doha, Qatar
| | - Jérémy Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alfredo Rossi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, University "La Sapienza'', Rome, Italy
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Catharina C Gross
- Department of Neurology & Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Akiko Arakawa
- Department of Dermatology, University of Munich (LMU), Munich, Germany
| | - Amos Gilhar
- Skin Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany; Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Centre for Dermatology Research, University of Manchester, MAHSC, and Manchester NIHR Biomedical Research Centre, Manchester, UK.
| |
Collapse
|
13
|
O'Neill K, Pastar I, Tomic-Canic M, Strbo N. Perforins Expression by Cutaneous Gamma Delta T Cells. Front Immunol 2020; 11:1839. [PMID: 32922397 PMCID: PMC7456908 DOI: 10.3389/fimmu.2020.01839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Gamma delta (GD) T cells are an unconventional T cell type present in both the epidermis and the dermis of human skin. They are critical to regulating skin inflammation, wound healing, and anti-microbial defense. Similar to CD8+ cytotoxic T cells expressing an alpha beta (AB) TCR, GD T cells have cytolytic capabilities. They play an important role in elimination of cutaneous tumors and virally infected cells and have also been implicated in pathogenicity of several autoimmune diseases. T cell cytotoxicity is associated with the expression of the pore forming protein Perforin. Perforin is an innate immune protein containing a membrane attack complex perforin-like (MACPF) domain and functions by forming pores in the membranes of target cells, which allow granzymes and reactive oxygen species to enter the cells and destroy them. Perforin-2, encoded by the gene MPEG1, is a newly discovered member of this protein family that is critical for clearance of intracellular bacteria. Cutaneous GD T cells express both Perforin and Perforin-2, but many questions remain regarding the role that these proteins play in GD T cell mediated cytotoxicity against tumors and bacterial pathogens. Here, we review what is known about Perforin expression by skin GD T cells and the mechanisms that contribute to Perforin activation.
Collapse
Affiliation(s)
- Katelyn O'Neill
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
14
|
Kowalski EH, Kneibner D, Kridin K, Amber KT. Serum and blister fluid levels of cytokines and chemokines in pemphigus and bullous pemphigoid. Autoimmun Rev 2019; 18:526-534. [DOI: 10.1016/j.autrev.2019.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022]
|
15
|
Das D, Akhtar S, Kurra S, Gupta S, Sharma A. Emerging role of immune cell network in autoimmune skin disorders: An update on pemphigus, vitiligo and psoriasis. Cytokine Growth Factor Rev 2019; 45:35-44. [PMID: 30773437 DOI: 10.1016/j.cytogfr.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
Abstract
Autoimmune skin diseases are a group of disorders that arise due to a deregulated immune system resulting in skin tissue destruction. In the majority of these conditions, either autoreactive immune cells or the autoantibodies are generated against self-antigens of the skin. Although the etiology of these diseases remains elusive, biochemical, genetic, and environmental factors such as infectious agents, toxins damage the skin tissue leading to self-antigen generation, autoantibody attack and finally results in autoimmunity of skin. Immune dysregulation, which involves predominantly T helper 1/17 (Th1/Th17) polarization and the inability of regulatory T cells to regress immune response, is implicated in autoimmune skin diseases. The emerging roles of immune cells, cytokines, and chemokines in the pathogenesis of common autoimmune skin diseases like pemphigus, vitiligo, and psoriasis are discussed in this review. The main focus is on the interplay between immune cell network including the innate and adaptive immune system, regulatory cells, immune checkpoints and recently identified tissue-resident memory cells (TRMs) in disease pathogenesis and relapse. We also attempt to highlight on the immune mechanisms common to these diseases which can be targeted for designing novel therapeutics.
Collapse
Affiliation(s)
- Dayasagar Das
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, India
| | - Shamima Akhtar
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, India
| | - Santosh Kurra
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, AIIMS, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, AIIMS, New Delhi, India.
| |
Collapse
|