1
|
Reis MDDS, Veneziani LP, Porto FL, Lins MP, Mendes-da-Cruz DA, Savino W. Intrathymic somatotropic circuitry: consequences upon thymus involution. Front Immunol 2023; 14:1108630. [PMID: 37426675 PMCID: PMC10323194 DOI: 10.3389/fimmu.2023.1108630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Growth hormone (GH) is a classic pituitary-derived hormone crucial to body growth and metabolism. In the pituitary gland, GH production is stimulated by GH-releasing hormone and inhibited by somatostatin. GH secretion can also be induced by other peptides, such as ghrelin, which interacts with receptors present in somatotropic cells. It is well established that GH acts directly on target cells or indirectly by stimulating the production of insulin-like growth factors (IGFs), particularly IGF-1. Notably, such somatotropic circuitry is also involved in the development and function of immune cells and organs, including the thymus. Interestingly, GH, IGF-1, ghrelin, and somatostatin are expressed in the thymus in the lymphoid and microenvironmental compartments, where they stimulate the secretion of soluble factors and extracellular matrix molecules involved in the general process of intrathymic T-cell development. Clinical trials in which GH was used to treat immunocompromised patients successfully recovered thymic function. Additionally, there is evidence that the reduction in the function of the somatotropic axis is associated with age-related thymus atrophy. Treatment with GH, IGF-1 or ghrelin can restore thymopoiesis of old animals, thus in keeping with a clinical study showing that treatment with GH, associated with metformin and dehydroepiandrosterone, could induce thymus regeneration in healthy aged individuals. In conclusion, the molecules of the somatotrophic axis can be envisioned as potential therapeutic targets for thymus regeneration in age-related or pathological thymus involution.
Collapse
Affiliation(s)
- Maria Danielma dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Luciana Peixoto Veneziani
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe Lima Porto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Wang C, Daley SR. How Thymocyte Deletion in the Cortex May Curtail Antigen-Specific T-Regulatory Cell Development in the Medulla. Front Immunol 2022; 13:892498. [PMID: 35693793 PMCID: PMC9176388 DOI: 10.3389/fimmu.2022.892498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cell responses to self-antigens are pivotal for immunological self-tolerance. Activation of Foxp3– T-conventional (T-conv) cells can precipitate autoimmune disease, whereas activation of Foxp3+ T-regulatory (T-reg) cells is essential to prevent autoimmune disease. This distinction indicates the importance of the thymus in controlling the differentiation of self-reactive CD4+ T cells. Thymocytes and thymic antigen-presenting cells (APC) depend on each other for normal maturation and differentiation. In this Hypothesis and Theory article, we propose this mutual dependence dictates which self-antigens induce T-reg cell development in the thymic medulla. We postulate self-reactive CD4+ CD8– thymocytes deliver signals that stabilize and amplify the presentation of their cognate self-antigen by APC in the thymic medulla, thereby seeding a niche for the development of T-reg cells specific for the same self-antigen. By limiting the number of antigen-specific CD4+ thymocytes in the medulla, thymocyte deletion in the cortex may impede the formation of medullary T-reg niches containing certain self-antigens. Susceptibility to autoimmune disease may arise from cortical deletion creating a “hole” in the self-antigen repertoire recognized by T-reg cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Randall KL, Law HD, Ziolkowski AF, Wirasinha RC, Goodnow CC, Daley SR. DOCK8 deficiency diminishes thymic T-regulatory cell development but not thymic deletion. Clin Transl Immunology 2021; 10:e1236. [PMID: 33437483 PMCID: PMC7790591 DOI: 10.1002/cti2.1236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
Objective To define the effect of DOCK8 deficiency on thymic tolerance in mice. Methods Thymocytes from wild‐type (Dock8+/+) and DOCK8‐deficient (Dock8pri/pri) mice were examined by flow cytometry. Some mice had transgenic expression of the BCL2 anti‐apoptotic protein in haemopoietic cells. Some mice expressed the transgenic 3A9 T‐cell receptor (TCR), which triggers thymocyte deletion in mice also expressing hen egg lysozyme under the insulin promoter. Results In Dock8pr/pri mice, the proportion of thymocytes induced to acquire tolerance at the immature CCR7− stage was normal. Deletion of strongly self‐reactive CD4+ thymocytes occurred efficiently in Dock8pri/pri mice in a TCR‐transgenic model that requires self‐antigen transfer from epithelial cells to bone marrow (BM)‐derived antigen‐presenting cells. Thymic Foxp3+ T‐regulatory cells (TREG) and Helios+ Foxp3− TREG precursors were decreased in Dock8pri/pri mice, including when apoptosis was inhibited by BCL2 transgene expression. Dock8pri/pri thymic TREG expressed CD25 and CTLA‐4 at normal levels. The results suggest that DOCK8 deficiency does not affect the function of BM‐derived antigen‐presenting cells in the thymus, the TCR self‐reactivity threshold that activates tolerance mechanisms in thymocytes or the apoptotic deletion of these thymocytes. However, DOCK8 is required to prevent a subset of developing TREG cells from undergoing cell death via a mechanism that is distinct from apoptosis. Conclusion DOCK8 deficiency diminishes TREG development in the thymus without compromising thymocyte deletion.
Collapse
Affiliation(s)
- Katrina L Randall
- Department of Immunology and Infectious Diseases The John Curtin School of Medical Research The Australian National University Canberra ACT Australia.,Australian National University Medical School The Australian National University Canberra ACT Australia
| | - Hsei Di Law
- Department of Immunology and Infectious Diseases The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Andrew F Ziolkowski
- Department of Immunology and Infectious Diseases The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Rushika C Wirasinha
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Melbourne VIC Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research & Cellular Genomics Futures Institute University of New South Wales Sydney NSW Australia
| | - Stephen R Daley
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Melbourne VIC Australia.,Present address: Centre for Immunology and Infection Control School of Biomedical Sciences Faculty of Health Queensland University of Technology Brisbane QLD Australia
| |
Collapse
|
4
|
Abstract
Understanding the pathogenesis of certain viral agents is essential for developing new treatments and obtaining a clinical cure. With the onset of the new coronavirus (SARS-CoV-2) pandemic in the beginning of 2020, a rush to conduct studies and develop drugs has led to the publication of articles that seek to address knowledge gaps and contribute to the global scientific research community. There are still no reports on the infectivity or repercussions of SARS-CoV-2 infection on the central lymphoid organ, the thymus, nor on thymocytes or thymic epithelial cells. In this brief review, we present a hypothesis about lymphopenia observed in SARS patients and the probable pathological changes that the thymus may undergo due to this new virus.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Xie Y, Zhang Y, Wei X, Zhou C, Huang Y, Zhu X, Chen Y, Wen H, Huang X, Lin J, Wang Z, Ren Y, Fan B, Deng X, Tan W, Wang C. Jianpi Huayu Decoction Attenuates the Immunosuppressive Status of H 22 Hepatocellular Carcinoma-Bearing Mice: By Targeting Myeloid-Derived Suppressor Cells. Front Pharmacol 2020; 11:16. [PMID: 32140106 PMCID: PMC7042893 DOI: 10.3389/fphar.2020.00016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-induced immunosuppressive microenvironment in which myeloid-derived suppressor cells (MDSCs) plays an important role, remains an obstacle for effective oncotherapy currently. Inducing MDSCs into maturation was confirmed as an effective method to reduce the tumor-bearing host's immunosuppression. Traditional Chinese medicines (TCM) possess characteristics of alleviating immunosuppression of cancer patients and low toxicity. Jianpi Huayu Decoction (JHD) was an experienced formula of TCM for oncotherapy based on TCM theory and clinical practice. We previously observed that JHD attenuated the expression of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) in tumor. IL-10 and TGF-β were found to be cytokines positively related to immunosuppression induced by MDSCs. Here, our study was designed to further investigate the regulation of JHD on the immune system in the H22 liver-cancer mouse model. Mainly, flow cytometry was used to detect the proportion of immune cells, to analyze the apoptosis, differentiation and reactive oxygen species of MDSCs. We found that JHD significantly reduced the destruction of spleen structure, reduced the proportion of regulatory T cells (Treg) and T helper 17 cells (Th17), and increased the proportion of cytotoxic T lymphotes (CTL), Dendritic cells (DC) and CD11b+Gr-1+cells in spleen, but with no significant change of T helper 1 cells (Th1), T helper 2 cells (Th2) and macrophages. In vitro experiments showed that apoptosis of MDSCs was decreased as the time of JHD stimulation increased, which partly explained the increase of CD11b+Gr-1+cells in the spleen. Meanwhile, JHD could promote the differentiation of MDSCs into macrophages and dendritic cells, attenuate expression of ROS in MDSCs and reduce its inhibition on the proliferation of CD4+ T cells, in vitro. Therefore, that the proportion of CD11b+Gr-1+ cells increased in the spleen of tumor-bearing hosts may not be villainy after treatment, when these drugs suppress the immunosuppressive ability of CD11b+Gr-1+ cells and promote it mature to replenish dendritic cell, at the same time. Generally, JHD may be a complementary and alternative drug for attenuating the immunosuppressive status induced by hepatocellular carcinoma, possibly by promoting differentiation and inhibiting the immunosuppressive activity of MDSCs.
Collapse
Affiliation(s)
- Yingjie Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Yuan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cheng Zhou
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yajing Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingwang Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yongxu Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Huihong Wen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Xuhui Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Juze Lin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Ziying Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Ren
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baochao Fan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Tan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Changjun Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Kurd NS, Lutes LK, Yoon J, Chan SW, Dzhagalov IL, Hoover AR, Robey EA. A role for phagocytosis in inducing cell death during thymocyte negative selection. eLife 2019; 8:48097. [PMID: 31868579 PMCID: PMC6957271 DOI: 10.7554/elife.48097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Autoreactive thymocytes are eliminated during negative selection in the thymus, a process important for establishing self-tolerance. Thymic phagocytes serve to remove dead thymocytes, but whether they play additional roles during negative selection remains unclear. Here, using a murine thymic slice model in which thymocytes undergo negative selection in situ, we demonstrate that phagocytosis promotes negative selection, and provide evidence for the escape of autoreactive CD8 T cells to the periphery when phagocytosis in the thymus is impaired. We also show that negative selection is more efficient when the phagocyte also presents the negative selecting peptide. Our findings support a model for negative selection in which the death process initiated following strong TCR signaling is facilitated by phagocytosis. Thus, the phagocytic capability of cells that present self-peptides is a key determinant of thymocyte fate.
Collapse
Affiliation(s)
- Nadia S Kurd
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Lydia K Lutes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jaewon Yoon
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ivan L Dzhagalov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ashley R Hoover
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
7
|
Yang F, Cai HH, Feng XE, Zhang YL, Ge R, Xiao BG, Li QS. 5,2′-Dibromo-2,4,5-trihydroxydiphenylmethanone, a novel immunomodulator of T lymphocytes by regulating the CD4+ T cell subset balance via activating the mitogen-activated protein kinase pathway. Int Immunopharmacol 2019; 72:487-495. [DOI: 10.1016/j.intimp.2019.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
8
|
Deletion of self-reactive CCR7- thymocytes in the absence of MHC expression on thymic epithelial cells. Cell Death Differ 2019; 26:2727-2739. [PMID: 31019259 DOI: 10.1038/s41418-019-0331-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
The selection of αβ T cells in the thymus is punctuated by checkpoints at which thymocytes differentiate or undergo apoptosis. Wave 1 deletion is defined as apoptosis within nascent αβ T-cell antigen receptor (TCR)-signalled thymocytes that lack CCR7 expression. The antigen-presenting cell (APC) types that mediate wave 1 deletion are unclear. To measure wave 1 deletion, we compared the frequencies of TCRβ + CD5 + Helios + CCR7- cells in nascent thymocyte cohorts in mice with normal or defective apoptosis. This thymocyte population is small in mice lacking major histocompatibility complex (MHC) expression. The scale of wave 1 deletion was increased by transgenic expression of the self-reactive Yae62 TCRβ chain, was almost halved when haemopoietic APCs lacked MHC expression and, surprisingly, was unchanged when epithelial cells lacked MHC expression. These findings demonstrate efficiency, and some redundancy, in the APC types that mediate wave 1 deletion in the normal mouse thymus.
Collapse
|