1
|
Gates JC, Abouyared M, Shnayder Y, Farwell DG, Day A, Alawi F, Moore M, Holcomb AJ, Birkeland A, Epstein J. Clinical Management Update of Oral Leukoplakia: A Review From the American Head and Neck Society Cancer Prevention Service. Head Neck 2025; 47:733-741. [PMID: 39584361 PMCID: PMC11717973 DOI: 10.1002/hed.28013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Oral potentially malignant disorders (OPMDs) occur in up to 4%-5% of the population, of which oral leukoplakia (OL) is the most common subtype. Predicting high-risk OL remains a challenge. Early diagnosis and effective treatment are thought to be of paramount importance to improve outcomes. METHODS We searched PubMed and Clinicaltrials.gov data for updates in the clinical management of OL from 2015 to current. RESULTS Recent publication of large cohorts of patients with OL aids in counseling patients regarding risk of malignant transformation. Management for OL includes surveillance, excision, and laser surgery, as well as local and systemic approaches to chemoprevention. Several new entities show promise regarding candidate biomarkers, chemoprevention agents, and diagnostic adjuncts, though all require further validation. CONCLUSION This update serves to further inform clinical management of OL and provide impetus for future investigations. TRIAL REGISTRATION NCT00099021, NCT00951379, NCT05727761, NCT05727761.
Collapse
Affiliation(s)
- James C. Gates
- Department of Oral and Maxillofacial SurgeryHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Marianne Abouyared
- Department of Otolaryngology—Head and Neck SurgeryUC Davis HealthSacramentoCaliforniaUSA
| | - Yelizaveta Shnayder
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Kansas School of MedicineKansas CityKansasUSA
| | - D. Gregory Farwell
- Department of Otorhinolaryngology—Head and Neck SurgeryHospital of the University of Pennsylvania and Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Andrew Day
- Department of OtolaryngologyUT Southwestern Medical CenterDallasTexasUSA
| | - Faizan Alawi
- Department of Oral and Maxillofacial Pathology, Penn Dental Medicine and Department of Cutaneous Biology, Perlman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael Moore
- Department of Otolaryngology‐ Head and Neck SurgeryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Holcomb
- Department of Head & Neck Surgical OncologyEstabrook Cancer Center, Nebraska Methodist HospitalOmahaNebraskaUSA
| | - Andrew Birkeland
- Department of Otolaryngology‐ Head and Neck SurgeryUC Davis HealthSacramentoCaliforniaUSA
| | - Joel Epstein
- Department of SurgeryCedars‐Sinai Health SystemLos AngelesCaliforniaUSA
- City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
2
|
Farah CS, Shearston K, Turner EC, Vacher M, Fox SA. Global gene expression profile of proliferative verrucous leukoplakia and its underlying biological disease mechanisms. Oral Oncol 2024; 151:106737. [PMID: 38408418 DOI: 10.1016/j.oraloncology.2024.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Proliferative verrucous leukoplakia (PVL) is a rare and enigmatic oral potentially malignant disorder which almost invariably results in oral squamous cell carcinoma (OSCC). The aims of this project were to use transcriptome profiling to characterise PVL gene expression patterns for biomarker identification and gain insight into the molecular aetiopathogenesis of PVL. METHODS Forty-three oral cavity mucosal biopsies from 32 patients with oral lesions clinically compatible with either PVL or non-PVL conventional oral leukoplakia (OLK) underwent transcriptome profiling by RNA sequencing. Data was analysed by hierarchical clustering, differential gene expression, functional enrichment and network analysis, sparse partial least squares discriminant analysis sPLS-DA, and immune cell phenotypic estimation. RESULTS We found 464 genes significantly differentially expressed at least 2-fold between PVL and non-PVL OLK (193 up and 271 down). HOX genes, including HOXA1 and HOXB7, keratin-associated proteins (KRTAPs) and olfactory receptor G proteins (OR) were significantly upregulated in PVL. Other upregulated genes in PVL included FOS, WNT16 and IFNA1. Pathway analysis showed that there was a significant downregulation of connective tissue signalling in PVL. Classifying multivariate models based upon 22 genes discriminated PVL from non-PVL OLK. Bioinformatic profiling showed that immune cell profiles in PVL and OLK were similar except that fibroblast markers were reduced in PVL. CONCLUSION These results demonstrate that PVL and conventional OLK are molecularly distinct with upregulation of many cancer-associated genes. They provide insight into the pathogenesis of PVL and show that biomarker based molecular diagnostics is feasible to discriminate and inform diagnosis and management.
Collapse
Affiliation(s)
- Camile S Farah
- Australian Centre for Oral Oncology Research & Education, Nedlands, WA, Australia; Central Queensland University, Rockhampton, Queensland, Australia; Genomics for Life, Milton, QLD, Australia.
| | - Kate Shearston
- Australian Centre for Oral Oncology Research & Education, Nedlands, WA, Australia; UWA Dental School, University of Western Australia, Nedlands, WA, Australia.
| | - Emma C Turner
- UWA Dental School, University of Western Australia, Nedlands, WA, Australia; Special Needs Dental Unit, Royal Darwin Hospital, Tiwi, NT, Australia
| | - Michael Vacher
- The Australian eHealth Research Centre, CSIRO Health and Biosecurity, Kensington, WA, Australia.
| | - Simon A Fox
- Australian Centre for Oral Oncology Research & Education, Nedlands, WA, Australia; UWA Dental School, University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
3
|
Seebauer C, Freund E, Dieke T, Hasse S, Segebarth M, Rautenberg C, Metelmann HR, Bekeschus S. Decreased inflammatory profile in oral leukoplakia tissue exposed to cold physical plasma ex vivo. J Oral Pathol Med 2023; 52:1021-1028. [PMID: 37827138 DOI: 10.1111/jop.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Oral leukoplakia (OL) is an unfavorable oral disease often resistant to therapy. To this end, cold physical plasma technology was explored as a novel therapeutic agent in an experimental setup. METHODS Biopsies with a diameter of 3 mm were obtained from non-diseased and OL tissues. Subsequently, cold atmospheric pressure plasma (CAP) exposure was performed ex vivo in the laboratory. After 20 h of incubation, biopsies were cryo-conserved, and tissue sections were quantified for lymphocyte infiltrates, discriminating between naïve and memory cytotoxic and T-helper cells. In addition, the secretion pattern related to inflammation was investigated in the tissue culture supernatants by quantifying 10 chemokines and cytokines. RESULTS In CAP-treated OL tissue, significantly decreased overall lymphocyte numbers were observed. In addition, reduced levels were observed when discriminating for the T-cell subpopulations but did not reach statistical significance. Moreover, CAP treatment significantly reduced levels of C-X-C motif chemokine 10 (CXCL10) and granulocyte-macrophage colony-stimulating factor in the OL biopsies' supernatants. In idiopathically inflamed tissues, ex vivo CAP exposure reduced T-cells and CXCL10 as well but also led to markedly increased interleukin-1β secretion. CONCLUSION Our findings suggest CAP to have immuno-modulatory properties, which could be of therapeutic significance in the therapy of OL. Future studies should investigate the efficacy of CAP therapy in vivo in a larger cohort.
Collapse
Affiliation(s)
- Christian Seebauer
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Eric Freund
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Tobias Dieke
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sybille Hasse
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Maria Segebarth
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Christoph Rautenberg
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Hans-Robert Metelmann
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Palaçon MP, de Oliveira Barbeiro C, Fernandes D, Biancardi MR, Silveira HA, Ferrisse TM, León JE, Kujan O, Bufalino A. Macrophages CD163+ and Factor XIIIa+ Provide a First-Line Defence against Proliferative Verrucous Leukoplakia Antigens. Int J Mol Sci 2023; 24:ijms24065242. [PMID: 36982316 PMCID: PMC10049257 DOI: 10.3390/ijms24065242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
This study aimed to evaluate the density of the dendritic cells (DCs) and macrophages in oral leukoplakia (OL) and proliferative verrucous leukoplakia (PVL) by immunohistochemical analysis. We analysed paraffined tissue samples of PVL (n = 27), OL (n = 20), and inflammatory fibrous hyperplasia (n = 20) as the control group using the immunomarkers for DCs (CD1a, CD207, CD83, CD208 and CD123) and macrophages (CD68, CD163, FXIIIa and CD209). A quantitative analysis of positive cells in the epithelial and subepithelial areas was determined. Our results showed a reduction in CD208+ cells in the subepithelial area of the OL and PVL compared to the control. Additionally, we found a higher density of FXIIIa+ and CD163+ cells in the subepithelial area in PVL compared to the OL and control. Four-way MANOVA revealed a relationship between increased CD123+ cell density in the subepithelial area of “high-risk” samples regardless of disease. Macrophages provide the first line of defence against PVL antigens, suggesting a distinct pattern of innate immune system activation in PVL compared to OL, which may contribute to the complexity and the high rate of malignant transformation in the PVL.
Collapse
Affiliation(s)
- Mariana Paravani Palaçon
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Camila de Oliveira Barbeiro
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Darcy Fernandes
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Mariel Ruivo Biancardi
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Heitor Albergoni Silveira
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Túlio Morandin Ferrisse
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Jorge Esquiche León
- Oral Pathology, Department of Stomatology, Public Oral and Forensic Dentistry, Ribeirão Preto Dental School, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, SP, Brazil
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence: (O.K.); (A.B.)
| | - Andreia Bufalino
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
- Correspondence: (O.K.); (A.B.)
| |
Collapse
|
5
|
Liu C, Zhou S, Lai H, Shi L, Bai W, Li X. Protective effect of spore oil-functionalized nano-selenium system on cisplatin-induced nephrotoxicity by regulating oxidative stress-mediated pathways and activating immune response. J Nanobiotechnology 2023; 21:47. [PMID: 36759859 PMCID: PMC9912657 DOI: 10.1186/s12951-022-01754-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
In clinical practice, cisplatin is the most commonly used chemotherapy drug to treat a range of malignancies. Severe ROS-regulated nephrotoxicity, however, restricts its applicability. Currently, the main mechanisms leading to cisplatin-induced nephrotoxicity in clinical settings involve hydration or diuresis. However, not all patients can be treated with massive hydration or diuretics. Therefore, it is crucial to develop a treatment modality that can effectively reduce nephrotoxicity through a foodborne route. Selenium has been reported to have strong antioxidant as well as anticancer effects when administered as spore oil. Herein, we established cellular and animal models of cisplatin-induced nephrotoxicity and synthesized spore oil-functionalized nano-selenium (GLSO@SeNPs). We found that GLSO@SeNPs inhibit the mitochondrial apoptotic pathway by maintaining oxidative homeostasis and regulating related signaling pathways (the MAPK, caspase, and AKT signaling pathways). In vivo, GLSO@SeNPs could effectively improve cisplatin-induced renal impairment, effectively maintaining oxidative homeostasis in renal tissues and thus inhibiting the process of renal injury. In addition, GLSO@SeNPs were converted into selenocysteine (SeCys2), which may exert protective effects. Furthermore, GLSO@SeNPs could effectively modulate the ratio of immune cells in kidneys and spleen, reducing the proportions of CD3+CD4+ T cells, CD3+CD8+ T cells, and M1 phenotype macrophages and increasing the proportion of anti-inflammatory regulatory T cells. In summary, in this study, we synthesized food-derived spore oil-functionalized nanomaterials, and we explored the mechanisms by which GLSO@SeNPs inhibit cisplatin-induced nephrotoxicity. Our study provides a basis and rationale for the inhibition of cisplatin-induced nephrotoxicity by food-derived nutrients.
Collapse
Affiliation(s)
- Chaofan Liu
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Sajin Zhou
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Haoqiang Lai
- grid.412601.00000 0004 1760 3828The First Affiliated Hospital of Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Department of Chemistry, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Lei Shi
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Weibin Bai
- grid.258164.c0000 0004 1790 3548Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632 People’s Republic of China ,grid.258164.c0000 0004 1790 3548Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, People's Republic of China. .,Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|