1
|
Toppila‐Salmi S, Reitsma S, Hox V, Gane S, Eguiluz‐Gracia I, Shamji M, Maza‐Solano J, Jääskeläinen B, Väärä R, Escribese MM, Chaker A, Karavelia A, Rudenko M, Gevaert P, Klimek L. Endotyping in Chronic Rhinosinusitis-An EAACI Task Force Report. Allergy 2025; 80:132-147. [PMID: 39641584 PMCID: PMC11724251 DOI: 10.1111/all.16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Chronic rhinosinusitis (CRS) is a clinical syndrome defined by typical sinonasal symptoms persisting for at least 12 weeks. CRS is divided into two distinct phenotypes, CRS with nasal polyps (CRSwNP) and without (CRSsNP). The aim of the review is to provide an update on the current knowledge in CRS endotypes. The prevailing hypothesis regarding the pathogenesis of CRS suggests that dysfunctional interactions between the host and environmental stressors at the mucosal surface drive the diverse inflammatory mechanisms. Genetic and epigenetic variations in the mucosal immune system are believed to play a significant role in the pathomechanisms of CRS. Various environmental agents (such as microbes and irritants) have been implicated in CRS. In a healthy state, the sinonasal mucosa acts as a barrier, modulating environmental stimulation and mounting appropriate immune responses against pathogens with minimal tissue damage. Different endotypes may exist based on the specific mechanistic pathways driving the chronic tissue inflammation of CRS. There is a need to understand endotypes in order to better predict, diagnose, and treat CRS. This literature review provides an update on the role of the endotypes in CRS and the limitations of endotyping CRS in clinical practice. Understanding of the pathogenesis and optimal management of CRS has progressed significantly in the last decades; however, there still are several unmet needs in endotype research.
Collapse
Affiliation(s)
- Sanna Toppila‐Salmi
- Department of OtorhinolaryngologyUniversity of Eastern FinlandKuopioFinland
- Department of OtorhinolaryngologyWellbeing Services County of Pohjois‐SavoKuopioFinland
- Inflammation Center, Department of AllergologyHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Sietze Reitsma
- Department of Otorhinolaryngology/Head‐Neck SurgeryAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Valérie Hox
- Department of Otorhinolaryngology, Head and Neck SurgeryCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Simon Gane
- Royal National Ear, Nose and Throat and Eastman Dental HospitalUniversity College London Hospitals NHS TrustLondonUK
| | - Ibon Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Malaga. IBIMA‐Plataforma BIONAND. RICORS Enfermedades InflamatoriasMalagaSpain
| | - Mohamed Shamji
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Juan Maza‐Solano
- Rhinology and Skull Base Unit, Department of OtolaryngologyUniversity Hospital Virgen MacarenaSevilleSpain
- Department of SurgeryUniversity of SevilleSevilleSpain
| | | | - Risto Väärä
- Department of OtorhinolaryngologyUniversity of Eastern FinlandKuopioFinland
| | - Maria M. Escribese
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de MedicinaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
| | - Adam Chaker
- Department of Otorhinolaryngology and Center for Allergy and EnvironmentTechnische Universität MünchenMünchenGermany
| | - Aspasia Karavelia
- Department of OtorhinolaryngologyGeneral Hospital of NafplioNafplioGreece
| | | | - Philippe Gevaert
- Upper Airways Research Laboratory, Department of Head and SkinGhent UniversityGhentBelgium
| | - Ludger Klimek
- Center for Rhinology and AllergologyWiesbadenGermany
| |
Collapse
|
2
|
Huang F, Liu F, Zhen X, Gong S, Chen W, Song Z. Pathogenesis, Diagnosis, and Treatment of Infectious Rhinosinusitis. Microorganisms 2024; 12:1690. [PMID: 39203531 PMCID: PMC11357447 DOI: 10.3390/microorganisms12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Rhinosinusitis is a common inflammatory disease of the sinonasal mucosa and paranasal sinuses. The pathogenesis of rhinosinusitis involves a variety of factors, including genetics, nasal microbiota status, infection, and environmental influences. Pathogenic microorganisms, including viruses, bacteria, and fungi, have been proven to target the cilia and/or epithelial cells of ciliated airways, which results in the impairment of mucociliary clearance, leading to epithelial cell apoptosis and the loss of epithelial barrier integrity and immune dysregulation, thereby facilitating infection. However, the mechanisms employed by pathogenic microorganisms in rhinosinusitis remain unclear. Therefore, this review describes the types of common pathogenic microorganisms that cause rhinosinusitis, including human rhinovirus, respiratory syncytial virus, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus species, etc. The damage of mucosal cilium clearance and epithelial barrier caused by surface proteins or secreted virulence factors are summarized in detail. In addition, the specific inflammatory response, mainly Type 1 immune responses (Th1) and Type 2 immune responses (Th2), induced by the entry of pathogens into the body is discussed. The conventional treatment of infectious sinusitis and emerging treatment methods including nanotechnology are also discussed in order to improve the current understanding of the types of microorganisms that cause rhinosinusitis and to help effectively select surgical and/or therapeutic interventions for precise and personalized treatment.
Collapse
Affiliation(s)
- Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiaofang Zhen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shu Gong
- The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenbi Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
3
|
Shaghayegh G, Cooksley C, Bouras G, Panchatcharam BS, Feizi S, Javadian S, Ramezanpour M, Fenix KA, Wormald PJ, Psaltis AJ, Vreugde S. S. aureus biofilm properties correlate with immune B cell subset frequencies and severity of chronic rhinosinusitis. Clin Immunol 2024; 263:110221. [PMID: 38636891 DOI: 10.1016/j.clim.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Staphylococcus aureus mucosal biofilms are associated with recalcitrant chronic rhinosinusitis (CRS). However, S. aureus colonisation of sinus mucosa is frequent in the absence of mucosal inflammation. This questions the relevance of S. aureus biofilms in CRS etiopathogenesis. This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Beula Subashini Panchatcharam
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Sholeh Feizi
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Shari Javadian
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Kevin Aaron Fenix
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia.
| |
Collapse
|
4
|
Scadding GK, Gray C, Conti DM, McDonald M, Backer V, Scadding G, Bernal-Sprekelsen M, De Corso E, Diamant Z, Hopkins C, Jesenak M, Johansen P, Kappen J, Mullol J, Price D, Quirce S, Reitsma S, Toppila-Salmi S, Senior B, Thyssen JP, Wahn U, Hellings PW. Pre-asthma: a useful concept? A EUFOREA paper. Part 2-late onset eosinophilic asthma. FRONTIERS IN ALLERGY 2024; 5:1404735. [PMID: 38812719 PMCID: PMC11133565 DOI: 10.3389/falgy.2024.1404735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
The concept of pre-diabetes has led to provision of measures to reduce disease progression through identification of subjects at risk of diabetes. We previously considered the idea of pre-asthma in relation to allergic asthma and considered that, in addition to the need to improve population health via multiple measures, including reduction of exposure to allergens and pollutants and avoidance of obesity, there are several possible specific means to reduce asthma development in those most at risk (pre- asthma). The most obvious is allergen immunotherapy (AIT), which when given for allergic rhinitis (AR) has reasonable evidence to support asthma prevention in children (2) but also needs further study as primary prevention. In this second paper we explore the possibilities for similar actions in late onset eosinophilic asthma.
Collapse
Affiliation(s)
- G. K. Scadding
- Department of Allergy & Rhinology, Royal National ENT Hospital, London, United Kingdom
- Division of Immunity and Infection, University College, London, United Kingdom
| | - C. Gray
- Paediatric Allergist, Red Cross Children's Hospital and University of Cape Town, Cape Town, South Africa
- Kidsallergy Centre, Cape Town, South Africa
| | - D. M. Conti
- The European Forum for Research and Education in Allergy and Airway Diseases Scientific Expert Team Members, Brussels, Belgium
- Escuela de Doctorado UAM, Centro de Estudios de Posgrado, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, no 2, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - M. McDonald
- The Allergy Clinic, Blairgowrie, Randburg, South Africa
| | - V. Backer
- Department of Otorhinolaryngology, Head & Neck Surgery, and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - G. Scadding
- Allergy, Royal Brompton Hospital, London, United Kingdom
| | - M. Bernal-Sprekelsen
- Otolaryngology-Department, Clinic Barcelona, Barcelona, Spain
- Otolaryngology-Department, University of Barcelona, Barcelona, Spain
| | - E. De Corso
- Otolaryngology Head and Neck Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Z. Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
| | - C. Hopkins
- Department of Rhinology and Skull Base Surgery, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - M. Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - P. Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - J. Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | - J. Mullol
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, FRCB-IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - D. Price
- Observational and Pragmatic Research Institute, Singapore, Singapore
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - S. Reitsma
- Department of Otorhinolarynogology and Head/Neck Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - S. Toppila-Salmi
- Department of Otorhinolaryngology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
- Department of Allergy, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - B. Senior
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. P. Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - U. Wahn
- Department for Pediatric Pneumology and Immunology, Charite University Medicine, Berlin, Germany
| | - P. W. Hellings
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals, Leuven, Belgium
- Laboratory of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|