1
|
Zhang SY, Xu QP, Shi LN, Li SW, Wang WH, Wang QQ, Lu LX, Xiao H, Wang JH, Li FY, Liang YM, Gong ST, Peng HR, Zhang Z, Tang H. Soluble CD4 effectively prevents excessive TLR activation of resident macrophages in the onset of sepsis. Signal Transduct Target Ther 2023; 8:236. [PMID: 37332010 DOI: 10.1038/s41392-023-01438-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 06/20/2023] Open
Abstract
T lymphopenia, occurring in the early phase of sepsis in response to systemic inflammation, is commonly associated with morbidity and mortality of septic infections. We have previously shown that a sufficient number of T cells is required to constrain Toll-like receptors (TLRs) mediated hyperinflammation. However, the underlying mechanisms remains unsolved. Herein, we unveil that CD4+ T cells engage with MHC II of macrophages to downregulate TLR pro-inflammatory signaling. We show further that the direct contact between CD4 molecule of CD4+ T cells or the ectodomain of CD4 (soluble CD4, sCD4), and MHC II of resident macrophages is necessary and sufficient to prevent TLR4 overactivation in LPS and cecal ligation puncture (CLP) sepsis. sCD4 serum concentrations increase after the onset of LPS sepsis, suggesting its compensatory inhibitive effects on hyperinflammation. sCD4 engagement enables the cytoplasmic domain of MHC II to recruit and activate STING and SHP2, which inhibits IRAK1/Erk and TRAF6/NF-κB activation required for TLR4 inflammation. Furthermore, sCD4 subverts pro-inflammatory plasma membrane anchorage of TLR4 by disruption of MHC II-TLR4 raft domains that promotes MHC II endocytosis. Finally, sCD4/MHCII reversal signaling specifically interferes with TLR4 but not TNFR hyperinflammation, and independent of the inhibitive signaling of CD40 ligand of CD4+ cells on macrophages. Therefore, a sufficient amount of soluble CD4 protein can prevent excessive inflammatory activation of macrophages via alternation of MHC II-TLR signaling complex, that might benefit for a new paradigm of preventive treatment of sepsis.
Collapse
Affiliation(s)
- Sheng-Yuan Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiu-Ping Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Li-Na Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shih-Wen Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Wei-Hong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Qing-Qing Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Liao-Xun Lu
- The Laboratory of Genetic Regulators in The Immune System, Xin-xiang Medical University, Xin-xiang, Henan Province, 453003, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Jun-Hong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Feng-Ying Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Yin-Ming Liang
- The Laboratory of Genetic Regulators in The Immune System, Xin-xiang Medical University, Xin-xiang, Henan Province, 453003, China
| | - Si-Tang Gong
- The Joint Center of Translational Medicine, Guangzhou Women and Children's Medical Center and Institut Pasteur of Shanghai, Guangzhou, 510623, China
| | - Hao-Ran Peng
- Department of Microbiology, Naval Medical University, Shanghai, 200433, China.
| | - Zheng Zhang
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China.
| | - Hong Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Rashin AA, Jernigan RL. Clusters of Structurally Similar MHC I HLA-A2 Molecules, Found with a New Method, Suggest Mechanisms of T-Cell Receptor Avidity. Biochemistry 2016; 55:167-85. [PMID: 26600404 DOI: 10.1021/acs.biochem.5b01077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Only α1 and α2 domains of the α-chain of the major histocompatibility complex (MHC) directly bind peptide antigens (Ag-s) and the T-cell receptor (TCR). Significant plasticity was found in the TCR but only minor in (α1 + α2). The α3-domain position variation was noted only in connection to its binding the coreceptor CD8. We apply our methods for identifying functional conformational changes in proteins to a systematic study of similarities between 43 X-ray structures of the entire α chains of MHC-I HLA-A2. Out of 903 different αHLA-A2 pairs 203 show similarities within the earlier determined uncertainty threshold and unexpectedly form three similarity clusters (SCs) with all/most structures in a cluster similar within the uncertainty threshold. Pairs from different SCs always differ above the threshold, mainly due to variations in the α3 position/structure. All structures in SC3 cannot bind the CD8 coreceptor. Strong hydrogen bonds between (α1 + α2) and α3 differ between SC1 and SC2 but are nearly invariant within each SC. Small conformational changes in the (α1 + α2), caused by Ag-s differences, act as an α3 "allosteric switch" between SC2 and SC1. Binding of CD8 to SC2-HLA-A2 (Tax-type Ag-s) changes it to SC1-HLA-A2 (HuD-type Ag-s). HuD binding to HLA-A2 is much less stable than Tax binding. CD8-liganded HLA-A2 preference for binding HuD suggests that CD8-HLA-A2 may present a weakly binding peptide for TCR recognition, supporting the hypothesis that CD8 increases TCR avidity to weak Ag-s. Other HLA-A2 functions may involve α3. TCR-A6-liganded-Tax-type-HLA-A2s form two small clusters, similar to either A6-liganded-HuD or A6-liganded-native-Tax HLA-A2s.
Collapse
Affiliation(s)
- Alexander A Rashin
- BioChemComp Inc , 543 Sagamore Avenue, Teaneck, New Jersey 07666, United States
- LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University , Ames, Iowa 50011-3020, United States
| | - Robert L Jernigan
- LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University , Ames, Iowa 50011-3020, United States
| |
Collapse
|