1
|
Toh HC, Yang MH, Wang HM, Hsieh CY, Chitapanarux I, Ho KF, Hong RL, Ang MK, Colevas AD, Sirachainan E, Lertbutsayanukul C, Ho GF, Nadler E, Algazi A, Lulla P, Wirth LJ, Wirasorn K, Liu YC, Ang SF, Low SHJ, Tho LM, Hasbullah HH, Brenner MK, Wang WW, Ong WS, Tan SH, Horak I, Ding C, Myo A, Samol J. Gemcitabine, carboplatin, and Epstein-Barr virus-specific autologous cytotoxic T lymphocytes for recurrent or metastatic nasopharyngeal carcinoma: VANCE, an international randomized phase III trial. Ann Oncol 2024; 35:1181-1190. [PMID: 39241963 DOI: 10.1016/j.annonc.2024.08.2344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus-specific cytotoxic T lymphocyte (EBV-CTL) is an autologous adoptive T-cell immunotherapy generated from the blood of individuals and manufactured without genetic modification. In a previous phase II trial of locally recurrent or metastatic nasopharyngeal carcinoma (R/M NPC) patients, first-line gemcitabine and carboplatin (GC) and EBV-CTL combination demonstrated objective antitumor EBV-CTL activity and a favorable safety profile. The present study explored whether this combined first-line chemo-immunotherapy strategy would produce superior clinical efficacy and better quality of life compared with conventional chemotherapy treatment. PATIENTS AND METHODS This multicenter, randomized, phase III trial evaluated the efficacy and safety of GC followed by EBV-CTL versus GC alone as first-line treatment of R/M NPC patients. Thirty clinical sites in Singapore, Malaysia, Taiwan, Thailand, and the USA were included. Subjects were randomized to first-line GC (four cycles) and EBV-CTL (six cycles) or GC (six cycles) in a 1 : 1 ratio. The primary outcome was overall survival (OS) and secondary outcomes included progression-free survival, objective response rate, clinical benefit rate, quality of life, and safety. CLINICALTRIALS gov identifier: NCT02578641. RESULTS A total of 330 subjects with NPC were enrolled. Most subjects in both treatment arms received four or more cycles of chemotherapy and most subjects in the GC + EBV-CTL group received two or more infusions of EBV-CTL. The central Good Manufacturing Practices (GMP) facility produced sufficient EBV-CTL for 94% of GC + EBV-CTL subjects. The median OS was 25.0 months in the GC + EBV-CTL group and 24.9 months in the GC group (hazard ratio = 1.19; 95% confidence interval 0.91-1.56; P = 0.194). Only one subject experienced a grade 2 serious adverse event related to EBV-CTL. CONCLUSIONS GC + EBV-CTL in subjects with R/M NPC demonstrated a favorable safety profile but no overall improvement in OS versus chemotherapy. This is the largest adoptive T-cell therapy trial reported in solid tumors to date.
Collapse
Affiliation(s)
- H C Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| | - M-H Yang
- Department of Oncology, Taipei Veterans General Hospital, Taipei
| | - H-M Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan City
| | - C Y Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan
| | - I Chitapanarux
- Department of Radiology, Chiang Mai University, Chiang Mai, Thailand
| | - K F Ho
- Clinical Oncology Unit, Mount Miriam Cancer Hospital, Tanjung Bungah, Malaysia
| | - R-L Hong
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - M K Ang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - A D Colevas
- Division of Medical Oncology, Stanford University School of Medicine, Stanford, USA
| | - E Sirachainan
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok
| | - C Lertbutsayanukul
- Department of Radiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - G F Ho
- Department of Clinical Oncology, University of Malaya, Kuala Lumpur, Malaysia
| | - E Nadler
- Texas Oncology-Baylor Charles A. Sammons Cancer Centre, Dallas
| | - A Algazi
- Division of Hematology and Oncology, University of California, San Francisco
| | - P Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston
| | - L J Wirth
- Harvard Medical School, Massachusetts General Hospital, Boston, USA
| | - K Wirasorn
- Department of Medicine, Srinagarind Khon Kaen University Hospital, Khon Kaen, Thailand
| | - Y C Liu
- Department of Radiation-Oncology, Veterans General Hospital-Taichung, Taichung, Taiwan
| | - S F Ang
- Penang Adventist Hospital, Penang
| | - S H J Low
- Pantai Hospital Kuala Lumpur, Kuala Lumpur
| | | | | | - M K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston
| | - W-W Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - W S Ong
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - S H Tan
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - I Horak
- Tessa Therapeutics Ltd, Singapore
| | - C Ding
- Tessa Therapeutics Ltd, Singapore
| | - A Myo
- Tessa Therapeutics Ltd, Singapore
| | - J Samol
- Department of Medical Oncology, Clinical Trials, CRIO, P.H. Feng Research Centre, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Singapore; Johns Hopkins University, Baltimore, USA
| |
Collapse
|
2
|
Corallo S, Lasagna A, Filippi B, Alaimo D, Tortorella A, Serra F, Vanoli A, Pedrazzoli P. Unlocking the Potential: Epstein-Barr Virus (EBV) in Gastric Cancer and Future Treatment Prospects, a Literature Review. Pathogens 2024; 13:728. [PMID: 39338919 PMCID: PMC11435077 DOI: 10.3390/pathogens13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Gastric cancer (GC) is a complex disease with various etiologies. While Helicobacter pylori infection is still one of the leading risk factors for GC, increasing evidence suggests a link between GC and other infective agents such as Epstein Bar Virus (EBV). EBV-associated gastric cancer (EBVaGC) is now recognized as a distinct subgroup of GC, and the complex interactions between the virus and gastric mucosa may influence its development. A recent integrative analysis of the genome and proteome of GC tissues by The Cancer Genome Atlas project has identified EBVaGC as a specific subtype characterized by PIK3CA and ARID1A mutations, extensive DNA hyper-methylation, and activation of immune signaling pathways. These molecular characteristics are markers of the unique molecular profile of this subset of GC and are potential targets for therapy. This review aims to provide an overview of the current knowledge on EBVaGC. It will focus on the epidemiology, clinic-pathological features, and genetic characteristics of EBVaGC. Additionally, it will discuss recent data indicating the potential use of EBV infection as a predictive biomarker of response to chemotherapy and immune checkpoint inhibitors. The review also delves into potential therapeutic approaches for EBVaGC, including targeted therapies and adoptive immunotherapy, highlighting the promising potential of EBV as a therapeutic target.
Collapse
Affiliation(s)
- Salvatore Corallo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angioletta Lasagna
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Beatrice Filippi
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Domiziana Alaimo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Anna Tortorella
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Francesco Serra
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Alessandro Vanoli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Anatomic Pathology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
3
|
Scherer LD, Rouce RH. Targeted cellular therapy for treatment of relapsed or refractory leukemia. Best Pract Res Clin Haematol 2023; 36:101481. [PMID: 37612000 DOI: 10.1016/j.beha.2023.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 08/25/2023]
Abstract
While the mainstay of treatment for high-risk or relapsed, refractory leukemia has historically revolved around allogeneic hematopoietic stem cell transplant (allo-HSCT), targeted immunotherapies have emerged as a promising therapeutic option, especially given the poor prognosis of patients who relapse after allo-HSCT. Novel cellular immunotherapies that harness the cytotoxic abilities of the immune system in a targeted manner (often called "adoptive" cell therapy), have changed the way we treat r/r hematologic malignancies and continue to change the treatment landscape given the rapid evolution of these powerful, yet sophisticated precision therapies that often offer a less toxic alternative to conventional salvage therapies. Importantly, adoptive cell therapy can be allo-HSCT-enabling or a therapeutic option for patients in whom transplantation has failed or is contraindicated. A solid understanding of the core concepts of adoptive cell therapy is necessary for stem cell transplant physicians, nurses and ancillary staff given its proximity to the transplant field as well as its inherent complexities that require specific expertise in compliant manufacturing, clinical application, and risk mitigation. Here we will review use of targeted cellular therapy for the treatment of r/r leukemia, focusing on chimeric antigen receptor T-cells (CAR T-cells) given the remarkable sustained clinical responses leading to commercial approval for several hematologic indications including leukemia, with brief discussion of other promising investigational cellular immunotherapies and special considerations for sustainability and scalability.
Collapse
Affiliation(s)
- Lauren D Scherer
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA
| | - Rayne H Rouce
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA.
| |
Collapse
|
4
|
Varghese B, Cen S, Zahoor H, Siddiqui I, Aron M, Sali A, Rhie S, Lei X, Rivas M, Liu D, Hwang D, Quinn D, Desai M, Vaishampayan U, Gill I, Duddalwar V. Feasibility of using CT radiomic signatures for predicting CD8-T cell infiltration and PD-L1 expression in renal cell carcinoma. Eur J Radiol Open 2022; 9:100440. [PMID: 36090617 PMCID: PMC9460152 DOI: 10.1016/j.ejro.2022.100440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023] Open
Abstract
Objectives To identify computed tomography (CT)-based radiomic signatures of cluster of differentiation 8 (CD8)-T cell infiltration and programmed cell death ligand 1 (PD-L1) expression levels in patients with clear-cell renal cell carcinoma (ccRCC). Methods Seventy-eight patients with pathologically confirmed localized ccRCC, preoperative multiphase CT and tumor resection specimens were enrolled in this retrospective study. Regions of interest (ROI) of the ccRCC volume were manually segmented from the CT images and processed using a radiomics panel comprising of 1708 metrics. The extracted metrics were used as inputs to three machine learning classifiers: Random Forest, AdaBoost, and ElasticNet to create radiomic signatures for CD8-T cell infiltration and PD-L1 expression, respectively. Results Using a cut-off of 80 lymphocytes per high power field, 59 % were classified to CD8 highly infiltrated tumors and 41 % were CD8 non highly infiltrated tumors, respectively. An ElasticNet classifier discriminated between these two groups of CD8-T cells with an AUC of 0.68 (95 % CI, 0.55-0.80). In addition, based on tumor proportion score with a cut-off of > 1 % tumor cells expressing PD-L1, 76 % were PD-L1 positive and 24 % were PD-L1 negative. An Adaboost classifier discriminated between PD-L1 positive and PD-L1 negative tumors with an AUC of 0.8 95 % CI: (0.66, 0.95). 3D radiomics metrics of graylevel co-occurrence matrix (GLCM) and graylevel run-length matrix (GLRLM) metrics drove the performance for CD8-Tcell and PD-L1 classification, respectively. Conclusions CT-radiomic signatures can differentiate tumors with high CD8-T cell infiltration with moderate accuracy and positive PD-L1 expression with good accuracy in ccRCC.
Collapse
Affiliation(s)
- Bino Varghese
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA,Correspondence to: Keck Medical Center of USC, University of Southern California, Norris Topping Tower 4417, Los Angeles, CA 90033, USA.
| | - Steven Cen
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Haris Zahoor
- Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Imran Siddiqui
- Keck School of Medicine, Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Manju Aron
- Keck School of Medicine, Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Akash Sali
- Homi Bhabha Cancer Hospital, Department of Pathology, Sangrur, Punjab, India
| | - Suhn Rhie
- Keck School of Medicine, Department of Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaomeng Lei
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Marielena Rivas
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Derek Liu
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Darryl Hwang
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - David Quinn
- Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mihir Desai
- Keck School of Medicine, Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Ulka Vaishampayan
- Rogel Cancer Center, Urologic Oncology Clinic, University of Michigan, Ann Arbor, MI, USA
| | - Inderbir Gill
- Keck School of Medicine, Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Vinay Duddalwar
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Harada S, Ando M, Ando J, Ishii M, Yamaguchi T, Yamazaki S, Toyota T, Ohara K, Ohtaka M, Nakanishi M, Shin C, Ota Y, Nakashima K, Ohshima K, Imai C, Nakazawa Y, Nakauchi H, Komatsu N. Dual-antigen targeted iPSC-derived chimeric antigen receptor-T cell therapy for refractory lymphoma. Mol Ther 2022; 30:534-549. [PMID: 34628050 PMCID: PMC8821952 DOI: 10.1016/j.ymthe.2021.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/04/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023] Open
Abstract
We generated dual-antigen receptor (DR) T cells from induced pluripotent stem cells (iPSCs) to mitigate tumor antigen escape. These cells were engineered to express a chimeric antigen receptor (CAR) for the antigen cell surface latent membrane protein 1 (LMP1; LMP1-CAR) and a T cell receptor directed to cell surface latent membrane protein 2 (LMP2), in association with human leucocyte antigen A24, to treat therapy-refractory Epstein-Barr virus-associated lymphomas. We introduced LMP1-CAR into iPSCs derived from LMP2-specific cytotoxic T lymphocytes (CTLs) to generate rejuvenated CTLs (rejTs) active against LMP1 and LMP2, or DRrejTs. All DRrejT-treated mice survived >100 days. Furthermore, DRrejTs rejected follow-up inocula of lymphoma cells, demonstrating that DRrejTs persisted long-term. We also demonstrated that DRrejTs targeting CD19 and LMP2 antigens exhibited a robust tumor suppressive effect and conferred a clear survival advantage. Co-operative antitumor effect and in vivo persistence, with unlimited availability of DRrejT therapy, will provide powerful and sustainable T cell immunotherapy.
Collapse
Affiliation(s)
- Sakiko Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Laboratory of Stem Cell Therapy Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kazuo Ohara
- Department of Hematology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba Center, Ibaraki 305-0047, Japan
| | | | - Chansu Shin
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazutaka Nakashima
- Department of Pathology, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinsyu University School of Medicine, Nagano 390-0802, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5461, USA.
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
6
|
Ishii M, Ando J, Yamazaki S, Toyota T, Ohara K, Furukawa Y, Suehara Y, Nakanishi M, Nakashima K, Ohshima K, Nakauchi H, Ando M. iPSC-Derived Neoantigen-Specific CTL Therapy for Ewing Sarcoma. Cancer Immunol Res 2021; 9:1175-1186. [PMID: 34385178 DOI: 10.1158/2326-6066.cir-21-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
The prognosis of Ewing sarcoma caused by EWS/FLI1 fusion is poor, especially after metastasis. Although therapy with CTLs targeted against altered EWS/FLI1 sequences at the gene break/fusion site may be effective, CTLs generated from peripheral blood are often exhausted because of continuous exposure to tumor antigens. We addressed this by generating induced pluripotent stem cell (iPSC)-derived functionally rejuvenated CTLs (rejT) directed against the neoantigen encoded by the EWS/FLI1 fusion gene. In this study, we examined the antitumor effects of EWS/FLI1-rejTs against Ewing sarcoma. The altered amino acid sequence at the break/fusion point of EWS/FLI1, when presented as a neoantigen, evokes an immune response that targets EWS/FLI1 + sarcoma. Although the frequency of generated EWS/FLI1-specific CTLs was only 0.003%, we successfully established CTL clones from a healthy donor. We established iPSCs from a EWS/FLI1-specific CTL clone and redifferentiated them into EWS/FLI1-specific rejTs. To evaluate cytotoxicity, we cocultured EWS/FLI1-rejTs with Ewing sarcoma cell lines. EWS/FLI1-rejTs rapidly and continuously suppressed the proliferation of Ewing sarcoma for >40 hours. Using a Ewing sarcoma xenograft mouse model, we verified the antitumor effect of EWS/FLI1-rejTs via imaging, and EWS/FLI1-rejTs conferred a statistically significant survival advantage. "Off-the-shelf" therapy is less destructive and disruptive than chemotherapy, and radiation is always desirable, particularly in adolescents, whom Ewing sarcoma most often affects. Thus, EWS/FLI1-rejTs targeting a Ewing sarcoma neoantigen could be a promising new therapeutic tool.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Blood Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kazuo Ohara
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Tsukuba, Ibaraki, Japan
| | - Kazutaka Nakashima
- Department of Pathology, School of Medicine, Kurume University, Kurume City, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume City, Fukuoka, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, California
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
7
|
Garcia-Aponte OF, Herwig C, Kozma B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy. J Biol Eng 2021; 15:13. [PMID: 33849630 PMCID: PMC8042697 DOI: 10.1186/s13036-021-00264-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bioreactors are essential tools for the development of efficient and high-quality cell therapy products. However, their application is far from full potential, holding several challenges when reconciling the complex biology of the cells to be expanded with the need for a manufacturing process that is able to control cell growth and functionality towards therapy affordability and opportunity. In this review, we discuss and compare current bioreactor technologies by performing a systematic analysis of the published data on automated lymphocyte expansion for adoptive cell therapy. We propose a set of requirements for bioreactor design and identify trends on the applicability of these technologies, highlighting the specific challenges and major advancements for each one of the current approaches of expansion along with the opportunities that lie in process intensification. We conclude on the necessity to develop targeted solutions specially tailored for the specific stimulation, supplementation and micro-environmental needs of lymphocytes’ cultures, and the benefit of applying knowledge-based tools for process control and predictability.
Collapse
Affiliation(s)
- Oscar Fabian Garcia-Aponte
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| |
Collapse
|
8
|
Abstract
Purpose of Review Virus-associated malignancies are a global health burden, constituting 10-12% of cancers worldwide. As these tumors express foreign viral antigens that can elicit specific T cell responses, virus-directed immunotherapies are a promising treatment strategy. Specifically, adoptive cell transfer of virus-specific T cells (VSTs) has demonstrated the potential to eradicate cancers associated with certain viruses. Recent Findings Initial studies in 1990s first showed that VSTs specific for the Epstein-Barr virus (EBVSTs) can induce complete remissions in patients with post-transplant lymphoproliferative disease. Since then, studies have validated the specificity and safety of VSTs in multiple lymphomas and solid malignancies. However, challenges remain to optimize this platform for widespread use, including enhancing potency and persistence, overcoming the immunosuppressive tumor microenvironment, and streamlining manufacturing processes that comply with regulatory requirements. Summary This review focuses on data from clinical trials evaluating VSTs directed against three viruses (EBV, HPV and MCPyV), as well as recent preclinical and clinical advances, and potential future directions.
Collapse
|
9
|
How I treat CMV reactivation after allogeneic hematopoietic stem cell transplantation. Blood 2020; 135:1619-1629. [PMID: 32202631 DOI: 10.1182/blood.2019000956] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation remains one of the most common and life-threatening infectious complications following allogeneic hematopoietic stem cell transplantation, despite novel diagnostic technologies, several novel prophylactic agents, and further improvements in preemptive therapy and treatment of established CMV disease. Treatment decisions for CMV reactivation are becoming increasingly difficult and must take into account whether the patient has received antiviral prophylaxis, the patient's individual risk profile for CMV disease, CMV-specific T-cell reconstitution, CMV viral load, and the potential drug resistance detected at the time of initiation of antiviral therapy. Thus, we increasingly use personalized treatment strategies for the recipient of an allograft with CMV reactivation based on prior use of anti-CMV prophylaxis, viral load, the assessment of CMV-specific T-cell immunity, and the molecular assessment of resistance to antiviral drugs.
Collapse
|
10
|
Honda T, Ando M, Ando J, Ishii M, Sakiyama Y, Ohara K, Toyota T, Ohtaka M, Masuda A, Terao Y, Nakanishi M, Nakauchi H, Komatsu N. Sustainable Tumor-Suppressive Effect of iPSC-Derived Rejuvenated T Cells Targeting Cervical Cancers. Mol Ther 2020; 28:2394-2405. [PMID: 32710827 PMCID: PMC7646217 DOI: 10.1016/j.ymthe.2020.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/09/2020] [Accepted: 07/05/2020] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy utilizing induced pluripotent stem cell (iPSC) technology has great potential. Functionally rejuvenated cytotoxic T lymphocytes (CTLs) can survive long-term as young memory T cells in vivo, with continuous tumor eradication. Banking of iPSCs as an unlimited “off-the-shelf” source of therapeutic T cells may be feasible. To generate safer iPSCs, we reprogrammed human papilloma virus type 16 (HPV16) E6-specific CTLs by Sendai virus vector without cotransduction of SV40 large T antigen. The iPSCs efficiently differentiated into HPV16-specific rejuvenated CTLs that demonstrated robust cytotoxicity against cervical cancer. The tumor-suppressive effect of rejuvenated CTLs was stronger and more persistent than that of original peripheral blood CTLs. These rejuvenated HPV16-specific CTLs provide a sustained tumor-suppressive effect even for epithelial cancers and constitute promising immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Tadahiro Honda
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yumi Sakiyama
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kazuo Ohara
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Building G, 2-1-6 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ayako Masuda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Building G, 2-1-6 Sengen, Tsukuba, Ibaraki 305-0047, Japan; National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
11
|
Leung W, Heslop HE. Adoptive Immunotherapy with Antigen-Specific T Cells Expressing a Native TCR. Cancer Immunol Res 2020; 7:528-533. [PMID: 30936089 DOI: 10.1158/2326-6066.cir-18-0888] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although T cells genetically modified with chimeric antigen receptors became the first immune effector product to obtain FDA approval, T-cell products that recognize their antigenic targets through their native receptors have also produced encouraging responses. For instance, T cells recognizing immunogenic viral antigens are effective when infused in immunosuppressed patients. A large number of tumor antigens are also expressed on nonviral tumors, but these antigens are less immunogenic. Many tumors can evade a transferred immune response by producing variants, which have lost the targeted antigens, or inhibitory molecules that recruit suppressive cells, impeding persistence and function of immune effectors. Nevertheless, infusion of antigen-specific T cells has been well-tolerated, and clinical responses have been consistently associated with immune activity against tumor antigens and epitope spreading. To overcome some of the obstacles mentioned above, current research is focused on defining ex vivo culture conditions that promote in vivo persistence and activity of infused antigen-specific T cells. Combinations with immune checkpoint inhibitors or epigenetic modifiers to improve T-cell activity are also being evaluated in the clinic. Antigen-specific T cells may also be manufactured to overcome tumor evasion mechanisms by targeting multiple antigens and engineered to be resistant to inhibitory factors, such as TGFβ, or to produce the cytokines that are essential for T-cell expansion and sustained antitumor activity. Here, we discuss the use of T cells specific to tumor antigens through their native receptors and strategies under investigation to improve antitumor responses.
Collapse
Affiliation(s)
- Wingchi Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
12
|
|
13
|
Boudreau G, Carli C, Lamarche C, Rulleau C, Bonnaure G, Néron S, Delisle JS. Leukoreduction system chambers are a reliable cellular source for the manufacturing of T-cell therapeutics. Transfusion 2018; 59:1300-1311. [DOI: 10.1111/trf.15121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Gabrielle Boudreau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Cédric Carli
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Caroline Lamarche
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Caroline Rulleau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Guillaume Bonnaure
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Medical Affairs and Innovation; Héma-Québec; Québec Québec Canada
| | - Sonia Néron
- Medical Affairs and Innovation; Héma-Québec; Québec Québec Canada
- Department of Biochemistry, Microbiology and Bio-informatics; Université Laval; Québec Québec Canada
| | - Jean-Sébastien Delisle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Hematology-Oncology Division; Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Department of Medicine; Université de Montréal; Montreal Québec Canada
| |
Collapse
|
14
|
Epstein-Barr Virus-Related Post-Transplantation Lymphoproliferative Disorders After Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2018. [DOI: 10.1016/j.bbmt.2018.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Amina Dahmani
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
- Hematology-Oncology service, Hôpital Maisonneuve-Rosemont, Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada.
| |
Collapse
|
16
|
TGF-β in T Cell Biology: Implications for Cancer Immunotherapy. Cancers (Basel) 2018; 10:cancers10060194. [PMID: 29891791 PMCID: PMC6025055 DOI: 10.3390/cancers10060194] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
|
17
|
|
18
|
Dharnidharka VR. Comprehensive review of post-organ transplant hematologic cancers. Am J Transplant 2018; 18:537-549. [PMID: 29178667 DOI: 10.1111/ajt.14603] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 01/25/2023]
Abstract
A higher risk for a variety of cancers is among the major complications of posttransplantation immunosuppression. In this part of a continuing series on cancers posttransplantation, this review focuses on the hematologic cancers after solid organ transplantation. Posttransplantation lymphoproliferative disorders (PTLDs), which comprise the great majority of hematologic cancers, represent a spectrum of conditions that include, but are not limited to, the Hodgkin and non-Hodgkin lymphomas. The oncogenic Epstein-Barr virus is a key pathogenic driver in many PTLD cases, through known and unknown mechanisms. The other hematologic cancers include leukemias and plasma cell neoplasms (multiple myeloma and plasmacytoma). Clinical features vary across malignancies and location. Preventive screening strategies have been attempted mainly for PTLDs. Treatments include the chemotherapy regimens for the specific cancers, but also include reduction of immunosuppression, rituximab, and other therapies.
Collapse
Affiliation(s)
- Vikas R Dharnidharka
- Division of Pediatric Nephrology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
19
|
Overview and Choice of Donor of Hematopoietic Stem Cell Transplantation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Bonter K, Breckenridge Z, Lachance S, Delisle JS, Bubela T. Opportunities and challenges for the cellular immunotherapy sector: a global landscape of clinical trials. Regen Med 2017; 12:623-636. [DOI: 10.2217/rme-2017-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Global investments in cellular immunotherapies reflect their curative potential. Our landscape of clinical trials will aid developers, investors, adopters and payers in planning for adoption and implementation along realistic time horizons. Trend data enable stakeholders to adapt their business models and capacity to bring immunotherapies to the clinic. For cancer, trends suggest a shift from cancer vaccines to adoptive cellular transfer, alongside a focus on solid tumors. Academic centers, mainly in the USA, lead in early-phase clinical trials and target identification; but industry involvement has increased fourfold over the past two decades. Trends indicate an increasingly personalized approach to onco-immunology, which raises challenges for cost-effective manufacturing and delivery models. Overcoming these challenges provides opportunities for innovative biotechnology firms.
Collapse
Affiliation(s)
- Katherine Bonter
- Genome Canada Personalized Cancer Immunotherapy Program, Montreal, Quebec, Canada
| | | | - Silvy Lachance
- Genome Canada Personalized Cancer Immunotherapy Program, Montreal, Quebec, Canada
- Hematology-Oncology Division, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Sébastien Delisle
- Genome Canada Personalized Cancer Immunotherapy Program, Montreal, Quebec, Canada
- Hematology-Oncology Division, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Tania Bubela
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
21
|
Lulla P, Heslop HE. Checkpoint inhibition and cellular immunotherapy in lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:390-396. [PMID: 27913506 PMCID: PMC6142511 DOI: 10.1182/asheducation-2016.1.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hodgkin and non-Hodgkin lymphoma are both good targets for immunotherapy, as they are accessible to antibodies and cell-based immunotherapy, express costimulatory molecules, and express lineage-restricted, viral, and unique tumor antigens. Blockade of the programmed-death 1 (PD-1) immune checkpoint has produced very encouraging response rates in patients with Hodgkin lymphoma, whereas adoptive transfer of Epstein-Barr Virus (EBV)-specific T cells has shown clinical activity in patients with posttransplant lymphoma and other EBV-associated lymphomas. T cells can also be genetically modified with chimeric antigen receptors (CARs) to confer specificity for surface antigens, and studies of CD19 CARs in lymphoma also have had encouraging response rates. Future directions include combination of checkpoint blockade and adoptive T-cell studies.
Collapse
Affiliation(s)
- Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| |
Collapse
|
22
|
Rouce RH, Sharma S, Huynh M, Heslop HE. Recent advances in T-cell immunotherapy for haematological malignancies. Br J Haematol 2016; 176:688-704. [PMID: 27897332 DOI: 10.1111/bjh.14470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vitro discoveries have paved the way for bench-to-bedside translation in adoptive T cell immunotherapy, resulting in remarkable clinical responses in a variety of haematological malignancies. Adoptively transferred T cells genetically modified to express CD19 CARs have shown great promise, although many unanswered questions regarding how to optimize T-cell therapies for both safety and efficacy remain. Similarly, T cells that recognize viral or tumour antigens though their native receptors have produced encouraging clinical responses. Honing manufacturing processes will increase the availability of T-cell products, while combining T-cell therapies has the ability to increase complete response rates. Lastly, innovative mechanisms to control these therapies may improve safety profiles while genome editing offers the prospect of modulating T-cell function. This review will focus on recent advances in T-cell immunotherapy, highlighting both clinical and pre-clinical advances, as well as exploring what the future holds.
Collapse
Affiliation(s)
- Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA.,Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Mai Huynh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
23
|
Liu Y, Yang W, Pan Y, Ji J, Lu Z, Ke Y. Genome-wide analysis of Epstein-Barr virus (EBV) isolated from EBV-associated gastric carcinoma (EBVaGC). Oncotarget 2016; 7:4903-14. [PMID: 26716899 PMCID: PMC4826252 DOI: 10.18632/oncotarget.6751] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) is linked to the development of a variety of malignancies, including EBV-associated gastric carcinoma (EBVaGC). In this study, EBVaGC was detected in 15 (7.3%) of 206 GC cases. To identify the EBV genomic variation, EBV genomic sequences isolated from 9 EBVaGC biopsy specimens were successfully retrieved, designated EBVaGC1 to EBVaGC9. By comparative analysis of these strains with another 6 completely sequenced EBV strains, EBV-wild type, B95–8, AG876, GD1, GD2, and HKNPC1, it was demonstrated that EBVaGC1 to 9 were most closely related to the GD1 strain. Phylogenetic analysis of the GC biopsy specimen-derived EBV (GC-EBV) genomes was subsequently performed to assess their genomic diversity and it exhibited the greatest divergence from the type 2 strain, AG876. Compared with the reference EBV strain GD1, they harbored 961 variations in total, including 919 substitutions, 23 insertions, and 19 deletions. Single nucleotide polymorphism (SNP) density varied substantially across all known open reading frames and was highest in latency-associated genes. Moreover, we identified 2 interstrain recombinants at the EBNA1 locus, which provided a further mechanism for the generation of diversity. Some T-cell epitope sequences in EBNA1 and LMP2A genes showed extensive variation across strains, which implied their importance in the development of vaccines and T-cell therapy. In conclusion, we reported the first genome-wide view of sequence variation of EBV isolated from primary EBVaGC biopsy specimens, which might serve as an effective method for further understanding the genomic variations contribute to EBVaGC carcinogenesis and treatment.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Haidian, Beijing, China
| | - Wenjun Yang
- Key Laboratory of Reproduction and Heredity of Ningxia Region, Medical Oncology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaqi Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Haidian, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Haidian, Beijing, China
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Haidian, Beijing, China
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Haidian, Beijing, China
| |
Collapse
|
24
|
Powell AB, Williams K, Cruz CRY. Gene-modified, cell-based therapies—an overview. Cytotherapy 2016; 18:1351-1359. [DOI: 10.1016/j.jcyt.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol 2016; 7:1602. [PMID: 27826287 PMCID: PMC5078142 DOI: 10.3389/fmicb.2016.01602] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human tumor virus now shown to be associated with a vast number of human diseases. Numerous studies have been conducted to understand infection, propagation, and transformation in various cell types linked to human diseases. However, a comprehensive lens through which virus infection, reactivation and transformation of infected host cells can be visualized is yet to be formally established and will need much further investigation. Several human cell types infected by EBV have been linked to associated diseases. However, whether these are a direct result of EBV infection or indirectly due to contributions by additional infectious agents will need to be fully investigated. Therefore, a thorough examination of infection, reactivation, and cell transformation induced by EBV will provide a more detailed view of its contributions that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV infection and the signaling activities of targeted cellular factors dysregulated on infection. Furthermore, these insights may lead to identification of therapeutic targets and agents for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the role of the encoded latent antigens, and the switch to latency or lytic replication which occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical factors which contribute to cell transformation. We also describe the fate of B-cells and epithelial cells after EBV infection and the expected consequences which contribute to establishment of viral-associated pathologies.
Collapse
Affiliation(s)
- Hem C Jha
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
26
|
Cruz CR, Bollard CM. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica 2016; 100:709-19. [PMID: 26034113 DOI: 10.3324/haematol.2014.113860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation.
Collapse
|
27
|
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are a group of conditions that involve uncontrolled proliferation of lymphoid cells as a consequence of extrinsic immunosuppression after organ or haematopoietic stem cell transplant. PTLDs show some similarities to classic lymphomas in the non-immunosuppressed general population. The oncogenic Epstein-Barr virus (EBV) is a key pathogenic driver in many early-onset cases, through multiple mechanisms. The incidence of PTLD varies with the type of transplant; a clear distinction should therefore be made between the conditions after solid organ transplant and after haematopoietic stem cell transplant. Recipient EBV seronegativity and the intensity of immunosuppression are among key risk factors. Symptoms and signs depend on the localization of the lymphoid masses. Diagnosis requires histopathology, although imaging techniques can provide additional supportive evidence. Pre-emptive intervention based on monitoring EBV levels in blood has emerged as the preferred strategy for PTLD prevention. Treatment of established disease includes reduction of immunosuppression and/or administration of rituximab (a B cell-specific antibody against CD20), chemotherapy and EBV-specific cytotoxic T cells. Despite these strategies, the mortality and morbidity remains considerable. Patient outcome is influenced by the severity of presentation, treatment-related complications and risk of allograft loss. New innovative treatment options hold promise for changing the outlook in the future.
Collapse
|
28
|
Selection of adenovirus-specific and Epstein-Barr virus-specific T cells with major histocompatibility class I streptamers under Good Manufacturing Practice (GMP)-compliant conditions. Cytotherapy 2015; 17:989-1007. [PMID: 25866178 DOI: 10.1016/j.jcyt.2015.03.613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/11/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND AIMS Despite antiviral drug therapies, human adenovirus (HAdV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections still contribute substantially to transplant-related death of patients after hematopoietic stem cell transplantation. Earlier clinical studies demonstrated successful adoptive transfer of magnetically selected CMV-specific T cells via removable, and thus Good Manufacturing Practice-compliant, major histocompatibility class I streptamers. Thus, the primary focus of the present study was the selection of HAdV-streptamer+ T cells, although in three experiments, EBV-streptamer+ T cells were also selected. METHODS Cells from leukaphereses of healthy donors were prepared in large (1-6 × 10(9)) and small (25 × 10(6)) cell batches. Whereas the larger batch was directly labeled with streptamers to select HAdV- and/or EBV-specific T cells (large-scale), the smaller batch was used to generate in vitro virus-specific T-cell lines before streptamer labeling for streptamer selection (small-scale). Isolation of HAdV- and/or EBV-specific T cells was performed with the use of the CliniMACS device. RESULTS The purity of HAdV- and EBV-streptamer+ T cells among CD3+ cells, obtained from large-scale selection, was up to 6.7% and 44%, respectively. If HAdV- and EBV-streptamers were applied simultaneously, the purity of antigen-specific T cells reached up to 50.7%. A further increase in purity reaching up to 98% was achieved by small-scale selection of HAdV-specific T cells. All final products fulfilled the microbiological and chemical release criteria. Interferon-γ-response indicating functional activity was seen in 6 of 9 HAdV and 2 of 3 EBV large-scale selections and in 2 of 3 HAdV small-scale selections. CONCLUSIONS HAdV-streptamers were shown to be clinically feasible for few patients after the large-scale approach but for larger patient numbers if combined with EBV-streptamers or after the small-scale approach.
Collapse
|
29
|
Abstract
Epstein-Barr virus (EBV) is usually acquired silently early in life and carried thereafter as an asymptomatic infection of the B lymphoid system. However, many circumstances disturb the delicate EBV-host balance and cause the virus to display its pathogenic potential. Thus, primary infection in adolescence can manifest as infectious mononucleosis (IM), as a fatal illness that magnifies the immunopathology of IM in boys with the X-linked lymphoproliferative disease trait, and as a chronic active disease leading to life-threatening hemophagocytosis in rare cases of T or natural killer (NK) cell infection. Patients with primary immunodeficiencies affecting the NK and/or T cell systems, as well as immunosuppressed transplant recipients, handle EBV infections poorly, and many are at increased risk of virus-driven B-lymphoproliferative disease. By contrast, a range of other EBV-positive malignancies of lymphoid or epithelial origin arise in individuals with seemingly intact immune systems through mechanisms that remain to be understood.
Collapse
Affiliation(s)
- Graham S Taylor
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; , , , ,
| | | | | | | | | |
Collapse
|
30
|
Pan-viral-microRNA screening identifies interferon inhibition as a common function of diverse viruses. Proc Natl Acad Sci U S A 2015; 112:1856-61. [PMID: 25624489 DOI: 10.1073/pnas.1417891112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diverse viruses encode regulatory RNAs called microRNAs (miRNAs). Despite much progress, the functions of the majority of viral miRNAs remain unknown. Most previous studies have used biochemical methods to uncover targets of viral miRNAs, but it is unclear what fraction of these targets is functionally important. Here, we apply an alternative strategy based on the premise that assorted viral miRNAs will share functionality. Screening a library of >70 human viral miRNAs showed that three unrelated miRNAs from distantly related herpesviruses significantly inhibited IFN signaling. Strikingly, each of these miRNAs directly reduced expression of the cyclic AMP-responsive element-binding protein (CBP), which as part of the p300-CBP complex, mediates IFN signaling. We show that both 5' and 3' derivatives from Epstein-Barr virus (EBV) encoded miR-BART-18 precursor miRNA (pre-miRNA) and the orthologous pre-miRNA from Rhesus lymphocryptovirus contribute to reducing IFN signaling. Thus, through both convergent and divergent evolutionary mechanisms, varied herpesviral miRNAs share the ability to decrease IFN signaling. Restoring miR-BART-18 to cells infected with an EBV miRNA mutant conveyed a cellular growth advantage upon IFN treatment, and relevant miRNAs from other herpesviruses were able to complement this activity. Blocking miR-BART-18 function in an EBV(+) tumor cell line renders cells more susceptible to IFN-mediated effects. These findings provide a mechanism that can at least partially explain the resistance of some EBV-associated tumors to IFN therapy. Our work suggests that similar pan-viral-miRNA functional-based screening strategies are warranted for determining relevant activities of other viral miRNAs.
Collapse
|
31
|
Vonderheide RH, June CH. Engineering T cells for cancer: our synthetic future. Immunol Rev 2014; 257:7-13. [PMID: 24329786 DOI: 10.1111/imr.12143] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert H Vonderheide
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|