1
|
Chen E, Zhou W. Immunotherapy in microsatellite-stable colorectal cancer: Strategies to overcome resistance. Crit Rev Oncol Hematol 2025; 212:104775. [PMID: 40409481 DOI: 10.1016/j.critrevonc.2025.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/04/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025] Open
Abstract
Colorectal cancer (CRC) is among the foremost causes of cancer-related mortality worldwide; however, individuals with microsatellite-stable (MSS) disease-who constitute most CRC diagnoses-derive limited benefit from existing immunotherapeutic approaches. Here, we outline emerging methods designed to address the inherent resistance of MSS CRC to immune checkpoint inhibitors (ICIs). Recent findings emphasize how the immunosuppressive tumor microenvironment (TME) in MSS CRC, marked by diminished immunogenicity and high levels of regulatory T cells and myeloid-derived suppressor cells, restricts effective antitumor immune activity. Combination regimens that merge ICIs with chemotherapy, anti-angiogenic agents, or targeted blockade of pathways such as TGF-β and VEGF have shown encouraging early outcomes, including enhanced antigen presentation and T-cell penetration. Novel immunomodulatory platforms-such as epigenetic modifiers, oncolytic viruses, and engineered probiotic vaccines-are under assessment to further reprogram the TME and boost therapeutic efficacy. Concurrently, progress in adoptive cell therapies (for example, chimeric antigen receptor (CAR) T cells) and the development of cancer vaccines targeting tumor-associated and neoantigens promise to extend immune control over MSS CRC. In parallel, improving patient selection through predictive biomarkers-from circulating tumor DNA (ctDNA) to gene expression signatures and specific molecular subtypes-could refine individualized treatment strategies. Finally, interventions that alter the gut microbiome, including probiotics and fecal transplantation, serve as complementary tools to strengthen ICI responses. Taken together, these insights and combined treatment strategies lay the foundation for more successful immunotherapeutic interventions in MSS CRC, ultimately aiming to provide sustained clinical benefits to a broader spectrum of patients.
Collapse
Affiliation(s)
- Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310016, China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
2
|
Wang M, Ding Q, Su W, Luo M, Yang R, Chen G, Wang Q, Zhang N, Gao J, Wang X, Huang T, Liu P, Fu D, Hong X, Zeng X, Wei Y, Xiao Y. A Mitochondrion-Targeted NIR-II Modulator for Synergistic Ferroptosis-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501397. [PMID: 40223477 DOI: 10.1002/smll.202501397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have limited clinical efficacy against gastric cancer (GC) due to the nonimmunogenic tumor microenvironment. Therefore, inducing immunogenic cell death (ICD) to reprogram the immunogenic landscape is essential. This study develops HD-FA nanoparticles by encapsulating a novel mitochondrion-targeted NIR-II modulator, HD, within DSPE-PEG-FA. HD-FA exhibits superior spatiotemporal resolution, robust tumor accumulation, and minimal adverse effects. Upon 808 nm laser irradiation, HD-FA generates reactive oxygen species, leading to ferroptosis and oxidative stress damage in GC cells by inhibiting the SLC7A11/GSH/GPX4 axis. HD-FA triggers ICD, resulting in antitumor activity not only in primary tumors but also in distant tumors. Moreover, HD-FA promotes dendritic cell maturation, increases the effector-memory T-cell frequency, and reduces the presence of myeloid-derived suppressor cells, thereby fostering enhanced antitumor immunity. This study presents the first report of a novel NIR-II modulator for GC immunogenic synergistic therapy with ICIs, marking significant advancements in the fight against GC.
Collapse
Affiliation(s)
- Miao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Qihang Ding
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Wuyue Su
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Min Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Runping Yang
- Department of Dermatology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Nan Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jialu Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaofen Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Dujiang Fu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xuechuan Hong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaodong Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yuling Xiao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| |
Collapse
|
3
|
Xu Y, Gu X, Shan S, Liu Z, Wang S, Zhang J, Lei Y, Zhong C, Zheng Q, Ren T, Li Z. Isovalerylspiramycin I suppresses small cell lung cancer proliferation via ATR/CHK1 mediated DNA damage response and PERK/eIF2α/ATF4/CHOP mediated ER stress. Biochem Pharmacol 2024; 230:116557. [PMID: 39353535 DOI: 10.1016/j.bcp.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Small cell lung cancer (SCLC) urgently needs new therapeutic approaches. We found that the antibiotic-derived compound Isovalerylspiramycin I (ISP-I) has potent anti-tumor activity against SCLC cell lines H1048 and DMS53 both in vitro and in vivo. ISP-I induced apoptosis, G2/M phase cell cycle arrest, and mitochondrial respiratory chain dysfunction in both cell lines. Comprehensive RNA sequencing revealed that the anti-SCLC effects of ISP-I were primarily attributed to ATR/CHK1-mediated DNA damage response and PERK/eIF2α/ATF4/CHOP-mediated ER stress. Importantly, the induction of DNA damage, ER stress, and apoptosis by ISP-I was mitigated by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC), underscoring the critical role of ROS in the anti-SCLC mechanism of ISP-I. Moreover, ISP-I treatment induced immunogenic cell death (ICD) in SCLC cells, as evidenced by increased adenosine triphosphate (ATP) secretion, elevated release of high-mobility group box 1 (HMGB1), and enhanced exposure of calreticulin (CRT) on the cell surface. Additionally, network pharmacology analysis, combined with cellular thermal shift assay (CETSA) and cycloheximide (CHX) chase experiments, demonstrated that ISP-I acted as a ligand for apurinic/apyrimidinic endonuclease 1 (APEX1) and promoted its degradation, leading to the accumulation of ROS. In conclusion, our findings elucidate the multifaceted mechanisms underlying the anti-cancer effects of ISP-I, highlighting its potential as a promising therapeutic candidate for SCLC treatment.
Collapse
Affiliation(s)
- Yongle Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Xiaohua Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Shan Shan
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Zeyu Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Shaoyang Wang
- School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| | - Jingyuan Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuqiong Lei
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Cheng Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Qi Zheng
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tao Ren
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Zhanxia Li
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
4
|
Chen Y, Wang Z, Zhang C, Su Y, Zhou T, Hu K. Revealing the mechanism of natural product-induced immunogenic cell death: opening a new chapter in tumor immunotherapy. Front Immunol 2024; 15:1470071. [PMID: 39445013 PMCID: PMC11496055 DOI: 10.3389/fimmu.2024.1470071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
This review underscores the role of natural products in inducing immunogenic cell death (ICD) as a key strategy in tumor immunotherapy. It reveals that natural products can activate ICD through multiple pathways-apoptosis, autophagy, pyroptosis, and necroptosis-leading to the release of danger-associated molecular patterns (DAMPs), dendritic cell activation, and improved antigen presentation, which together stimulate a potent anti-tumor immune response. The study also demonstrates the enhanced therapeutic potential of combining natural products with immune checkpoint inhibitors. With a focus on translating preclinical findings into clinical practice, this review consolidates recent discoveries and suggests future research paths, offering both theoretical insights and practical guidance for advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Yukun Chen
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenzhi Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Zhang
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yisa Su
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Zhou
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiwen Hu
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Rashid M, Ramezani M, Molavi O, Ghesmati Z, Baradaran B, Sabzichi M, Ramezani F. Targeting hypoxia-inducible factor 1 alpha augments synergistic effects of chemo/immunotherapy via modulating tumor microenvironment in a breast cancer mouse model. BIOIMPACTS : BI 2024; 15:30424. [PMID: 40256236 PMCID: PMC12008255 DOI: 10.34172/bi.30424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 04/22/2025]
Abstract
Introduction The immunosuppressive context of the tumor microenvironment (TME) is a significant hurdle in breast cancer (BC) treatment. Combinational therapies targeting cancer core signaling pathways involved in the induction of TME immunosuppressive milieu have emerged as a potent strategy to overcome immunosuppression in TME and enhance patient therapeutic outcomes. This study presents compelling evidence that targeting hypoxia-inducible-factor-1 alpha (Hif-1α) alongside chemotherapy and immune-inducing factors leads to substantial anticancer effects through modulation of TME. Methods Chitosan (Cs)/Hif-1alpha siRNA nano-complex was synthesized by siRNA adsorption methods. Nanoparticles were fully characterized using dynamic light scattering and scanning electron microscope. Cs/Hif-1α siRNA cytotoxicity was measured by MTT assay. The anticancer effects of the combinational therapy were assessed in BALB/c bearing 4T1 tumors. qPCR and western blotting were applied to assess the expression of some key genes and proteins involved in the induction of immunosuppression in TME. Results Hif-1α siRNA was successfully loaded in chitosan nanoparticles. Hif-1α siRNA nanocomplexes significantly inhibited the expression of Hif-1α. Triple combination therapy (Paclitaxel (Ptx) + Imiquimod (Imq) + Cs/Hif-1α siRNA) inhibited tumor growth and downregulated cancer progression genes while upregulating cellular-immune-related cytokines. Mice without Cs/Hif-1α siRNA treatments revealed fewer cancer inhibitory effects and more TME immunosuppressive factors. These results suggest that the inhibition of Hif-1α effects synergize with Ptx and Imq to inhibit cancer progression more significantly than other combinational treatments. Conclusion Combining Hif-1α siRNA with Ptx and Imq is promising as a multimodality treatment. It has the potential to attenuate TME inhibitory effects and significantly enhance the immune system's ability to combat tumor cell growth, offering an inspiration of hope in the fight against BC.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Ramezani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Malla R, Kumari S, Ganji SP, Srilatha M, Nellipudi HR, Nagaraju GP. Reactive oxygen species of tumor microenvironment: Harnessing for immunogenic cell death. Biochim Biophys Acta Rev Cancer 2024; 1879:189154. [PMID: 39019409 DOI: 10.1016/j.bbcan.2024.189154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The tumor microenvironment (TME) is a dynamic and complex system that undergoes continuous changes in its network architecture, notably affecting redox homeostasis. These alterations collectively shape a diverse ecosystem actively supporting tumor progression by influencing the cellular and molecular components of the TME. Despite the remarkable clinical advancements in cancer immunotherapy, its spectrum of clinical utility is limited by the altered TME and inadequate tumor immunogenicity. Recent studies have revealed that some conventional and targeted therapy strategies can augment the efficacy of immunotherapy even in patients with less immunogenic solid tumors. These strategies provoke immunogenic cell death (ICD) through the ROS-dependent liberation of damage-associated molecular patterns (DAMPs). These DAMPs recognize and bind with Pattern Recognition Receptors (PRRs) on immune cells, activating and maturing defense cells, ultimately leading to a robust antitumor immune response. The present review underscores the pivotal role of redox homeostasis in orchestrating the transition of TME from a cold to a hot phenotype and the ROS-ICD axis in immune response induction. Additionally, it provides up-to-date insights into strategies that leverage ROS generation to induce ICD. The comprehensive analysis aims to develop ROS-based effective cancer immunotherapies for less immunogenic tumors.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Swapna Priya Ganji
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
7
|
Beltrán-Visiedo M, Serrano-Del Valle A, Jiménez-Aldúan N, Soler-Agesta R, Naval J, Galluzzi L, Marzo I. Cytofluorometric assessment of calreticulin exposure on CD38 + plasma cells from the human bone marrow. Methods Cell Biol 2024; 189:189-206. [PMID: 39393883 DOI: 10.1016/bs.mcb.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Exposure of the endoplasmic reticulum chaperone calreticulin (CALR) on the surface of stressed and dying cells is paramount for their effective engulfment by professional antigen-presenting cells such as dendritic cells (DCs). Importantly, this is required (but not sufficient) for DCs to initiate an adaptive immune response that culminates with an effector phase as well as with the establishment of immunological memory. Conversely, the early exposure of phosphatidylserine (PS) on the outer layer of the plasma membrane is generally associated with the rapid engulfment of stressed and dying cells by tolerogenic macrophages. Supporting the clinical relevance of the CALR exposure pathway, the spontaneous or therapy-driven translocation of CALR to the surface of malignant cells, as well as intracellular biomarkers thereof, have been associated with improved disease outcome in patients affected by a variety of neoplasms, with the notable exception of multiple myeloma (MM). Here, we describe an optimized protocol for the flow cytometry-assisted quantification of surface-exposed CALR and PS on CD38+ plasma cells from the bone marrow of patients with MM. With some variations, we expect this method to be straightforwardly adaptable to the detection of CALR and PS on the surface of cancer cells isolated from patients with neoplasms other than MM.
Collapse
Affiliation(s)
- Manuel Beltrán-Visiedo
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | | | - Nelia Jiménez-Aldúan
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Ruth Soler-Agesta
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
8
|
Wang B, Zhang Y, Yin X. Advances in tumor immunomodulation based on nanodrug delivery systems. Front Immunol 2023; 14:1297493. [PMID: 38106403 PMCID: PMC10725201 DOI: 10.3389/fimmu.2023.1297493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Immunotherapy is a therapeutic approach that employs immunological principles and techniques to enhance and amplify the body's immune response, thereby eradicating tumor cells. Immunotherapy has demonstrated effective antitumor effects on a variety of malignant tumors. However, when applied to humans, many immunotherapy drugs fail to target lesions with precision, leading to an array of adverse immune-related reactions that profoundly limit the clinical application of immunotherapy. Nanodrug delivery systems enable the precise delivery of immunotherapeutic drugs to targeted tissues or specific immune cells, enhancing the immune antitumor effect while reducing the number of adverse reactions. A nanodrug delivery system provides a feasible strategy for activating the antitumor immune response by the following mechanisms: 1) increased targeting and uptake of vaccines by DCs, which enhances the efficacy of the immune response; 2) increased tumor cell immunogenicity; 3) regulation of TAMs and other cells by, for example, regulating the polarization of TAMs and interfering with TAN formation, and ECM remodeling by CAFs; and 4) interference with tumor immune escape signaling pathways, namely, the PD-1/PD-L1, FGL1/LAG-3 and IDO signaling pathways. This paper reviews the progress of nanodrug delivery system research with respect to tumor immunotherapy based on tumor immunomodulation over the last few years, discussing the promising future of these delivery systems under this domain.
Collapse
Affiliation(s)
- Bo Wang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, China
| | - Yue Zhang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, China
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
9
|
Maines LW, Keller SN, Smith CD. Opaganib (ABC294640) Induces Immunogenic Tumor Cell Death and Enhances Checkpoint Antibody Therapy. Int J Mol Sci 2023; 24:16901. [PMID: 38069222 PMCID: PMC10706694 DOI: 10.3390/ijms242316901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA; (L.W.M.)
| |
Collapse
|
10
|
Gabizon A, Shmeeda H, Draper B, Parente-Pereira A, Maher J, Carrascal-Miniño A, de Rosales RTM, La-Beck NM. Harnessing Nanomedicine to Potentiate the Chemo-Immunotherapeutic Effects of Doxorubicin and Alendronate Co-Encapsulated in Pegylated Liposomes. Pharmaceutics 2023; 15:2606. [PMID: 38004584 PMCID: PMC10675201 DOI: 10.3390/pharmaceutics15112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Encapsulation of Doxorubicin (Dox), a potent cytotoxic agent and immunogenic cell death inducer, in pegylated (Stealth) liposomes, is well known to have major pharmacologic advantages over treatment with free Dox. Reformulation of alendronate (Ald), a potent amino-bisphosphonate, by encapsulation in pegylated liposomes, results in significant immune modulatory effects through interaction with tumor-associated macrophages and activation of a subset of gamma-delta T lymphocytes. We present here recent findings of our research work with a formulation of Dox and Ald co-encapsulated in pegylated liposomes (PLAD) and discuss its pharmacological properties vis-à-vis free Dox and the current clinical formulation of pegylated liposomal Dox. PLAD is a robust formulation with high and reproducible remote loading of Dox and high stability in plasma. Results of biodistribution studies, imaging with radionuclide-labeled liposomes, and therapeutic studies as a single agent and in combination with immune checkpoint inhibitors or gamma-delta T lymphocytes suggest that PLAD is a unique product with distinct tumor microenvironmental interactions and distinct pharmacologic properties when compared with free Dox and the clinical formulation of pegylated liposomal Dox. These results underscore the potential added value of PLAD for chemo-immunotherapy of cancer and the relevance of the co-encapsulation approach in nanomedicine.
Collapse
Affiliation(s)
- Alberto Gabizon
- Nano-Oncology Research Center, Oncology Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hilary Shmeeda
- Nano-Oncology Research Center, Oncology Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Benjamin Draper
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK; (B.D.); (A.P.-P.); (J.M.)
| | - Ana Parente-Pereira
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK; (B.D.); (A.P.-P.); (J.M.)
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Cancer Centre, Great Maze Pond, London SE1 9RT, UK; (B.D.); (A.P.-P.); (J.M.)
| | - Amaia Carrascal-Miniño
- King’s College London, School of Biomedical Engineering & Imaging Sciences, St. Thomas’ Hospital, London SE1 7EH, UK; (A.C.-M.); (R.T.M.d.R.)
| | - Rafael T. M. de Rosales
- King’s College London, School of Biomedical Engineering & Imaging Sciences, St. Thomas’ Hospital, London SE1 7EH, UK; (A.C.-M.); (R.T.M.d.R.)
| | - Ninh M. La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA;
| |
Collapse
|