1
|
Reed CR, Williams T, Taritsa I, Wu K, Chnari E, O'Connor MJ, Melnick BA, Ho KC, Long M, Huffman KN, Galiano RD. Exploring the Efficacy of Selected Allografts in Chronic Wound Healing: Evidence from Murine Models and Clinical Data for a Proposed Treatment Algorithm. Adv Wound Care (New Rochelle) 2025; 14:260-272. [PMID: 38753722 DOI: 10.1089/wound.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Significance: Chronic wounds can lead to poor outcomes for patients, with risks, including amputation and death. In the United States, chronic wounds affect 2.5% of the population and cost up to $28 billion per year in primary health care costs. Recent Advances: Allograft tissues (dermal, amnion, and amnion/chorion) have shown efficacy in improving healing of chronic, recalcitrant wounds in human patients, as evidenced by multiple clinical trials. Their mechanisms of actions have been relatively understudied, until recently. Research in murine models has shown that dermal allografts promote reepithelialization, amnion allografts promote granulation tissue formation and angiogenesis, and amnion/chorion allografts support all stages of wound healing. These findings confirm their effectiveness and illuminate their therapeutic mechanisms. Critical Issues: Despite the promise of allografts in chronic wound care, a gap exists in understanding which allografts are most effective during each wound healing stage. The variable efficacy among each type of allograft suggests a mechanistic approach toward a proposed clinical treatment algorithm, based on wound characteristics and patient's needs, may be beneficial. Future Directions: Recent advances in allografts provide a framework for further investigations into patient-specific allograft selection. This requires additional research to identify which allografts support the best outcomes during each stage of wound healing and in which wound types. Longitudinal human studies investigating the long-term impacts of allografts, particularly in the remodeling phase, are also essential to developing a deeper understanding of their role in sustained wound repair and recovery.
Collapse
Affiliation(s)
- Charlotte R Reed
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tokoya Williams
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Iulianna Taritsa
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kevin Wu
- Research and Development, MTF Biologics, Edison, New Jersey, USA
| | - Evangelia Chnari
- Research and Development, MTF Biologics, Edison, New Jersey, USA
| | - Madeline J O'Connor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley A Melnick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | - Kelly C Ho
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marc Long
- Research and Development, MTF Biologics, Edison, New Jersey, USA
| | - Kristin N Huffman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Galiano
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Harmon KA, Kimmerling KA, Avery JT, Mowry KC. Hypothermically Stored Amnion Is Robust and Provides a Scaffold for Supporting Wound Healing by Retaining the Characteristics of Native Tissue. Int J Mol Sci 2024; 25:10347. [PMID: 39408676 PMCID: PMC11476553 DOI: 10.3390/ijms251910347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Placental-derived products have been used since the early 1900s for wound applications and have shown clinical utility in supporting wound healing. A hypothermically stored amniotic membrane (HSAM) was developed using a proprietary process to allow for the retention of the extracellular matrix (ECM), viable cells, and key proteins. To evaluate its utility, we characterized the HSAM and compared it to a native unprocessed amniotic membrane (uAM) and a dehydrated amniotic membrane (dAM), as well as assessing the functionality of the HSAM as a scaffold to promote cell growth. The HSAM, uAM, and dAM were compared using scanning electron microscopy (SEM), histology, and thickness. Scaffold durability was assessed in vitro using mechanical testing and a simulated wound fluid (SWF) model. The ability of the HSAM to act as a scaffold was evaluated using an in vitro attachment model. The HSAM showed similar structural characteristics compared to the uAM; however, the dAM was significantly more compact. There were no significant differences between the HSAM and the uAM following degradation in an SWF model. ECM- and placental-related proteins were shared between the HSAM and uAM, and the HSAM enhanced the attachment and proliferation of fibroblasts in vitro. The HSAM is substantially similar to the uAM by retaining key regulatory proteins, resisting degradation in SWF, and acting as a scaffold for cellular growth and invasion.
Collapse
Affiliation(s)
| | | | | | - Katie C. Mowry
- Organogenesis Discovery Center, Birmingham, AL 35243, USA
| |
Collapse
|
3
|
Cazzell SM, Caporusso J, Vayser D, Davis RD, Alvarez OM, Sabolinski ML. Dehydrated Amnion Chorion Membrane versus standard of care for diabetic foot ulcers: a randomised controlled trial. J Wound Care 2024; 33:S4-S14. [PMID: 38973638 DOI: 10.12968/jowc.2024.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Diabetic foot ulcers (DFUs) continue to challenge wound care practitioners. This prospective, multicentre, randomised controlled trial (RCT) evaluated the effectiveness of a dehydrated Amnion Chorion Membrane (dACM) (Organogenesis Inc., US) versus standard of care (SoC) alone in complex DFUs in a challenging patient population. METHOD Subjects with a DFU extending into dermis, subcutaneous tissue, tendon, capsule, bone or joint were enrolled in a 12-week trial. They were allocated equally to two treatment groups: dACM (plus SoC); or SoC alone. The primary endpoint was frequency of wound closure determined by a Cox analysis that adjusted for duration and wound area. Kaplan-Meier analysis was used to determine median time to complete wound closure (CWC). RESULTS The cohort comprised 218 patients, and these were split equally between the two treatment groups with 109 patients in each. A Cox analysis showed that the estimated frequency of wound closure for the dACM plus SoC group was statistically superior to the SoC alone group at week 4 (12% versus 8%), week 6 (22% versus 11%), week 8 (31% versus 21%), week 10 (42% versus 27%) and week 12 (50% versus 35%), respectively (p=0.04). The computed hazard ratio (1.48 (confidence interval: 0.95, 2.29) showed a 48% greater probability of wound closure in favour of the dACM group. Median time to wound closure for dACM-treated ulcers was 84 days compared to 'not achieved' in the SoC-treated group (i.e., ≥50% of SoC-treated DFUs failed to heal by week 12; p=0.04). CONCLUSION In an adequately powered DFU RCT, dACM increased the frequency, decreased the median time, and improved the probability of CWC when compared with SoC alone. dACM demonstrated beneficial effects in DFUs in a complex patient population. DECLARATION OF INTEREST This study was funded by Organogenesis Inc., US. JC serves as a consultant and speaker for Organogenesis. RDD serves as a speaker for Organogenesis. OMA and MLS serve as consultants for Organogenesis. The authors have no other conflicts of interest to declare.
Collapse
Affiliation(s)
| | | | | | | | - Oscar M Alvarez
- Department of Surgery, Division of Plastic Surgery, Rutgers NJMS, Newark, NJ, US
| | | |
Collapse
|
4
|
Kapp D, Pfendler L. Management of post-Mohs surgical wounds with a hypothermically stored amniotic membrane: a case series. J Wound Care 2024; 33:S22-S27. [PMID: 38683816 DOI: 10.12968/jowc.2024.33.sup5.s22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE The aim of this case series is to present an alternative approach to managing post-Mohs Micrographic Surgery (Mohs) wounds with hypothermically stored amniotic membrane (HSAM). METHOD A case series of patients with post-Mohs wounds is presented, with four patients referred for hard-to-heal wounds following a Mohs procedure that was performed 1-3 months previously. All wounds underwent weekly assessment, debridement, and application of HSAM and secondary dressings. Treatment also included management of bioburden, proper skin care and compression therapy for lower extremity wounds. RESULTS This case series of seven wounds consisted of four females and three males with a mean age of 87.6 years. Mean wound size at first application of HSAM was 1.34±1.20cm2. All wounds closed, with an average time to wound closure of 43.7±27.1 days. Patients received an average of 4.6±2.5 HSAM applications. The four post-Mohs wounds with a history of being hard-to-heal had an average time to wound closure of 35.5±16.3 days, with an average duration of 86.5±32.4 days prior to the first HSAM application. CONCLUSION The results of this case series suggest that use of HSAM may provide an alternative approach to managing post-Mohs wounds. In addition, these findings suggest that HSAM may be of greatest benefit when applied early after Mohs surgery.
Collapse
Affiliation(s)
- Daniel Kapp
- Daniel L. Kapp M.D. Plastic Surgery and Wound Care, West Palm Beach, FL 33401
| | - Laura Pfendler
- Daniel L. Kapp M.D. Plastic Surgery and Wound Care, West Palm Beach, FL 33401
| |
Collapse
|
5
|
Jafari A, Mirzaei Y, Mer AH, Rezaei-Tavirani M, Jafari Z, Niknejad H. Comparison of the effects of preservation methods on structural, biological, and mechanical properties of the human amniotic membrane for medical applications. Cell Tissue Bank 2024; 25:305-323. [PMID: 37840108 DOI: 10.1007/s10561-023-10114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Amniotic membrane (AM), the innermost layer of the placenta, is an exceptionally effective biomaterial with divers applications in clinical medicine. It possesses various biological functions, including scar reduction, anti-inflammatory properties, support for epithelialization, as well as anti-microbial, anti-fibrotic and angio-modulatory effects. Furthermore, its abundant availability, cost-effectiveness, and ethical acceptability make it a compelling biomaterial in the field of medicine. Given the potential unavailability of fresh tissue when needed, the preservation of AM is crucial to ensure a readily accessible and continuous supply for clinical use. However, preserving the properties of AM presents a significant challenge. Therefore, the establishment of standardized protocols for the collection and preservation of AM is vital to ensure optimal tissue quality and enhance patient safety. Various preservation methods, such as cryopreservation, lyophilization, and air-drying, have been employed over the years. However, identifying a preservation method that effectively safeguards AM properties remains an ongoing endeavor. This article aims to review and discuss different sterilization and preservation procedures for AM, as well as their impacts on its histological, physical, and biochemical characteristics.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nusring, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | | | - Zahra Jafari
- 9th Dey Manzariye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sanchez A, Hartstein A, Ashry H, Raza M. Use of hypothermically stored amniotic membrane on diabetic foot ulcers: a multicentre retrospective case series. J Wound Care 2024; 33:S16-S23. [PMID: 38457306 DOI: 10.12968/jowc.2024.33.sup3.s16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The aim of this retrospective case series was to report on the outcomes of diabetic foot ulcers (DFUs) managed with hypothermically stored amniotic membrane (HSAM). METHOD Deidentified case data of patients who received HSAM were obtained from wound care sites across the US. Data were collected, beginning at the first patient visit to the wound care site (first presentation), at the visit in which the first HSAM application occurred (baseline), and at each subsequent visit over 12 weeks of treatment (follow-up). All patients received standard of care (SoC) between first presentation and baseline. RESULTS Of the 50 patients in the study, 68% were male. Mean age of the entire cohort was 66.7 years. Of the DFUs, 88% were present for <6 months at first presentation. Mean wound area was 3.5cm2, and mean percentage area reduction was -68.3% from first presentation to baseline. The mean number of HSAM applications was 5.5, and mean number of days between applications was 7.5. A >60% area reduction was attained in 96.0% of DFUs, and 78% attained complete wound closure (CWC) by week 12. The median time to CWC was 55 days. CONCLUSION The results of this retrospective case series suggest positive outcomes for DFUs managed with HSAM. A reduction in time to CWC may lead to lesser financial burden and improved quality of life for DFU patients. DECLARATION OF INTEREST The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | - Alan Hartstein
- Palm Beach Foot & Ankle, Palm Beach Gardens, FL 33410, US
| | - Hisham Ashry
- Palm Beach Foot & Ankle, Palm Beach Gardens, FL 33410, US
| | | |
Collapse
|
7
|
Khan A, Kothiwale SV. Evaluation on the efficacy of processed hydrated and dehydrated amnion chorion membrane on the proliferation of periodontal ligament fibroblasts. Cell Tissue Bank 2024; 25:349-356. [PMID: 36840842 DOI: 10.1007/s10561-023-10077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
The purpose of the present study was to process and assess the effect of hydrated amnion chorion membrane and dehydrated amnion chorion membrane on proliferation of periodontal ligament (PDL) fibroblast cells. The amnion chorion membrane (ACM) from placenta of 18 systemically healthy patients was obtained from the Department of Obstetrics and Gynaecology. They were processed as hydrated and dehydrated based on different processing methods. The Periodontal ligament cells were obtained from periodontal ligament of freshly extracted premolars of systemically healthy patients, due to orthodontic reasons. The PDL cells were further cultured in laboratory and were exposed to hydrated and dehydrated amnion chorion membrane. The MTT assay was performed to assess the proliferation of PDL fibroblast cells after 24 and 48 h. The hydrated and dehydrated amnion chorion membrane showed proliferation of PDL fibroblasts after 24 and 48 h. The proliferation of PDL fibroblasts in hydrated (p = 0.043) and dehydrated (p = 0.050) amnion chorion membrane was statistically significant at the end of 24 and 48 h respectively. On inter-group comparison dehydrated ACM showed significant proliferation of PDL fibroblasts after 24 (p=0.014) and 48 h (p=0.019). Within the limits of the present study, it can be concluded: both hydrated and dehydrated amnion chorion membrane showed proliferationof PDL fibroblast cells. However, dehydrated ACM showed significant proliferation of PDL fibroblasts.
Collapse
Affiliation(s)
- Ayesha Khan
- Department of Periodontics, KAHER's KLE V.K. Institute of Dental Sciences, Belagavi, Karnataka, 590010, India
| | - Shaila V Kothiwale
- Department of Periodontics, KAHER's KLE V.K. Institute of Dental Sciences, Belagavi, Karnataka, 590010, India.
| |
Collapse
|
8
|
Kafili G, Niknejad H, Tamjid E, Simchi A. Amnion-derived hydrogels as a versatile platform for regenerative therapy: from lab to market. Front Bioeng Biotechnol 2024; 12:1358977. [PMID: 38468689 PMCID: PMC10925797 DOI: 10.3389/fbioe.2024.1358977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In recent years, the amnion (AM) has emerged as a versatile tool for stimulating tissue regeneration and has been of immense interest for clinical applications. AM is an abundant and cost-effective tissue source that does not face strict ethical issues for biomedical applications. The outstanding biological attributes of AM, including side-dependent angiogenesis, low immunogenicity, anti-inflammatory, anti-fibrotic, and antibacterial properties facilitate its usage for tissue engineering and regenerative medicine. However, the clinical usage of thin AM sheets is accompanied by some limitations, such as handling without folding or tearing and the necessity for sutures to keep the material over the wound, which requires additional considerations. Therefore, processing the decellularized AM (dAM) tissue into a temperature-sensitive hydrogel has expanded its processability and applicability as an injectable hydrogel for minimally invasive therapies and a source of bioink for the fabrication of biomimetic tissue constructs by recapitulating desired biochemical cues or pre-defined architectural design. This article reviews the multi-functionality of dAM hydrogels for various biomedical applications, including skin repair, heart treatment, cartilage regeneration, endometrium regeneration, vascular graft, dental pulp regeneration, and cell culture/carrier platform. Not only recent and cutting-edge research is reviewed but also available commercial products are introduced and their main features and shortcomings are elaborated. Besides the great potential of AM-derived hydrogels for regenerative therapy, intensive interdisciplinary studies are still required to modify their mechanical and biological properties in order to broaden their therapeutic benefits and biomedical applications. Employing additive manufacturing techniques (e.g., bioprinting), nanotechnology approaches (e.g., inclusion of various bioactive nanoparticles), and biochemical alterations (e.g., modification of dAM matrix with photo-sensitive molecules) are of particular interest. This review article aims to discuss the current function of dAM hydrogels for the repair of target tissues and identifies innovative methods for broadening their potential applications for nanomedicine and healthcare.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Liuizė (Abramavičiūtė) A, Mongirdienė A. TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. Int J Mol Sci 2024; 25:2104. [PMID: 38396781 PMCID: PMC10889676 DOI: 10.3390/ijms25042104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of oxidised lipoproteins on the endothelium, monocytes, platelets, and macrophages is a key factor in the initiation and development of atherosclerosis. Antioxidant action, lipoprotein metabolism, and chronic inflammation are the fields of research interest for better understanding the development of the disease. All the fields are related to inflammation and hence to the secretion of cytokines, which are being investigated as potential diagnostic markers for the onset of atherosclerosis. Pathways of vascular damage are crucial for the development of new laboratory readouts. The very early detection of endothelial cell damage associated with the onset of atherosclerosis, allowing the initiation of therapy, remains a major research goal. This article summarises the latest results on the relationship of tumour growth factor beta (TGF-β) isoforms and growth differentiation factor 15 (GDF-15) to the pathogenesis of atherosclerosis: which cells involved in atherosclerosis produce them, which effectors stimulate their synthesis and secretion, how they influence atherosclerosis development, and the relationship between the levels of TGF-β and GDF-15 in the blood and the development and extent of atherosclerosis.
Collapse
Affiliation(s)
| | - Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
10
|
Harmon KA, Kammer M, Avery JT, Kimmerling KA, Mowry KC. Retention of Key Characteristics of Unprocessed Chorion Tissue Resulting in a Robust Scaffold to Support Wound Healing. Int J Mol Sci 2023; 24:15786. [PMID: 37958770 PMCID: PMC10649069 DOI: 10.3390/ijms242115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Placental membranes have been widely studied and used clinically for wound care applications, but there is limited published information on the benefits of using the chorion membrane. The chorion membrane represents a promising source of placental-derived tissue to support wound healing, with its native composition of extracellular matrix (ECM) proteins and key regulatory proteins. This study examined the impact of hypothermic storage on the structure of chorion membrane, ECM content, and response to degradation in vitro. Hypothermically stored chorion membrane (HSCM) was further characterized for its proteomic content, and for its functionality as a scaffold for cell attachment and proliferation in vitro. HSCM retained the native ECM structure, composition, and integrity of native unprocessed chorion membrane and showed no differences in response to degradation in an in vitro wound model. HSCM retained key regulatory proteins previously shown to be present in placental membranes and promoted the attachment and proliferation of fibroblasts in vitro. These data support the fact that hypothermic storage does not significantly impact the structure and characteristics of the chorion membrane compared to unprocessed tissue or its functionality as a scaffold to support tissue growth.
Collapse
|
11
|
Protzman NM, Mao Y, Long D, Sivalenka R, Gosiewska A, Hariri RJ, Brigido SA. Placental-Derived Biomaterials and Their Application to Wound Healing: A Review. Bioengineering (Basel) 2023; 10:829. [PMID: 37508856 PMCID: PMC10376312 DOI: 10.3390/bioengineering10070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic wounds are associated with considerable patient morbidity and present a significant economic burden to the healthcare system. Often, chronic wounds are in a state of persistent inflammation and unable to progress to the next phase of wound healing. Placental-derived biomaterials are recognized for their biocompatibility, biodegradability, angiogenic, anti-inflammatory, antimicrobial, antifibrotic, immunomodulatory, and immune privileged properties. As such, placental-derived biomaterials have been used in wound management for more than a century. Placental-derived scaffolds are composed of extracellular matrix (ECM) that can mimic the native tissue, creating a reparative environment to promote ECM remodeling, cell migration, proliferation, and differentiation. Reliable evidence exists throughout the literature to support the safety and effectiveness of placental-derived biomaterials in wound healing. However, differences in source (i.e., anatomical regions of the placenta), preservation techniques, decellularization status, design, and clinical application have not been fully evaluated. This review provides an overview of wound healing and placental-derived biomaterials, summarizes the clinical results of placental-derived scaffolds in wound healing, and suggests directions for future work.
Collapse
Affiliation(s)
- Nicole M Protzman
- Healthcare Analytics, LLC, 78 Morningside Dr., Easton, PA 18045, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Desiree Long
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| | - Raja Sivalenka
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| | - Anna Gosiewska
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| | - Robert J Hariri
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| | - Stephen A Brigido
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| |
Collapse
|
12
|
Sacco R, Akintola O, Sacco N, Acocella A, Calasans-Maia MD, Maranzano M, Olate S. The Use of Human Amniotic Membrane (hAM) as a Treatment Strategy of Medication-Related Osteonecrosis of the Jaw (MRONJ): A Systematic Review and Meta-Analysis of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050968. [PMID: 37241200 DOI: 10.3390/medicina59050968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Background and objectives: Although it is very uncommon, medication-induced osteonecrosis of the jaw (also known as MRONJ) can have serious consequences. Traditionally, this adverse event has been recognised in patients who were treated with bisphosphonate (BP) drugs. Nevertheless, in recent years, it has been established that individuals having treatment with various types of medications, such as a receptor activator of nuclear factor kappa-Β ligand inhibitor (denosumab) and antiangiogenic agents, have had the same issue. The purpose of this research is to determine if the application of human amniotic membrane (hAM) may be used as a therapy for MRONJ. Material and Methods: A multi-source database (MEDLINE, EMBASE, AMED, and CENTRAL) systematic search was performed. The major objective of this study is to obtain an understanding of the efficacy of hAM when it is employed as a treatment modality for MRONJ. The protocol of this review was registered in the INPLASY register under the number NPLASY202330010. Results: The authors were able to include a total of five studies for the quality analysis, whereas for the quantity evaluation, only four studies were eligible. A total of 91 patients were considered for the investigation. After treatment with human amniotic membrane (hAM), a recurrence of osteonecrosis was observed in n = 6 cases (8.8%). The combined efficacy of surgical therapy and the use of hAM resulted in an overall success rate of 91.2%. Intraoperative complications were only documented in one article, and they were mostly caused by the positioning of the hAM, which led to wound breakdown at the surgical site. Conclusions: Based on the small amount of data and low-quality research included in this study, using human amniotic membranes to treat MRONJ might represent a feasible option. Nevertheless, further studies with a wider patient population are required to understand the long-term impacts.
Collapse
Affiliation(s)
- Roberto Sacco
- Oral Surgery Department, School of Medical Sciences, Division of Dentistry, The University of Manchester, Manchester M13 9PL, UK
- FACOP-Faculdade do Centro Oeste Paulista, Dental School, Oral Surgery Department, Bauru 17499-010, Brazil
- Oral Surgery Department, King's College Hospital NHS Trust, London SE5 9RW, UK
| | - Oladapo Akintola
- Oral Surgery Department, King's College Hospital NHS Trust, London SE5 9RW, UK
| | - Nicola Sacco
- Anaesthetic & Critical Care, University of Campania Luigi Vanvitelli, 80138 Caserta, Italy
| | | | | | - Massimo Maranzano
- Oral and Maxillofacial Surgery Department, Manchester University NHS Foundation Trust (MFT), Manchester M13 9WL, UK
| | - Sergio Olate
- Division of Oral and Maxillofacial Surgery, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
13
|
de Souza IC, Takejima AL, Simeoni RB, Gamba LK, Ribeiro VST, Foltz KM, de Noronha L, de Almeida MB, Neto JRF, de Carvalho KAT, da Silveira PCL, Pinho RA, Francisco JC, Guarita-Souza LC. Acellular Biomaterials Associated with Autologous Bone Marrow-Derived Mononuclear Stem Cells Improve Wound Healing through Paracrine Effects. Biomedicines 2023; 11:biomedicines11041003. [PMID: 37189621 DOI: 10.3390/biomedicines11041003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 05/17/2023] Open
Abstract
Wound healing is a complex process of repair that involves the interaction between different cell types and involves coordinated interactions between intracellular and extracellular signaling. Bone Marrow Mesenchymal Stem Cells (BMSCs) based and acellular amniotic membrane (AM) therapeutic strategies with the potential for treatment and regeneration of tissue. We aimed to evaluate the involvement of paracrine effects in tissue repair after the flap skin lesion rat model. In the full-thickness flap skin experiment of forty Wistar rats: A total of 40 male Wistar rats were randomized into four groups: group I: control (C; n = 10), with full-thickness lesions on the back, without (BMSCs) or AM (n = 10); group II: injected (BMSCs; n = 10); group III: covered by AM; group IV-injected (AM + BMSCs; n = 10). Cytokine levels, IL-1, and IL-10 assay kits, superoxide dismutase (SOD), glutathione reductase (GRs) and carbonyl activity levels were measured by ELISA 28th day, and TGF-β was evaluated by immunohistochemical, the expression collagen expression was evaluated by Picrosirius staining. Our results showed that the IL-1 interleukin was higher in the control group, and the IL-10 presented a higher mean when compared to the control group. The groups with BMSCs and AM showed the lowest expression levels of TGF-β. SOD, GRs, and carbonyl activity analysis showed a predominance in groups that received treatment from 80%. The collagen fiber type I was predominant in all groups; however, the AM + BMSCs group obtained a higher average when compared to the control group. Our findings suggest that the AM+ BMSCs promote skin wound healing, probably owing to their paracrine effect attributed to the promotion of new collagen for tissue repair.
Collapse
Affiliation(s)
- Isio Carvalho de Souza
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Aline Luri Takejima
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Rossana Baggio Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Luize Kremer Gamba
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Katia Martins Foltz
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Lucia de Noronha
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Meila Bastos de Almeida
- Department of Veterinary Medicine, Universidade Federal do Paraná (UFPR), Rua XV de Novembro, 1299, Curitiba 80060-000, SP, Brazil
| | - Jose Rocha Faria Neto
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, 1632 Silva Jardim Avenue, Curitiba 80240-902, SP, Brazil
| | - Paulo Cesar Lock da Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Julio Cesar Francisco
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Luiz César Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| |
Collapse
|
14
|
Tarsorrhaphy with Sutureless Amnion Transplantation: Practical Management of Ocular Surface Pathologies. BEYOGLU EYE JOURNAL 2022; 7:313-319. [PMID: 36628076 PMCID: PMC9794511 DOI: 10.14744/bej.2022.10327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 01/13/2023]
Abstract
Objectives The objective of the study was to evaluate the technique of tarsorrhaphy combined with sutureless amniotic membrane transplantation in the treatment of resistant ocular surface pathologies. Methods In this study, the post-operative results of patients who underwent tarsorrhaphy combined with sutureless amniotic membrane between May 2016 and July 2021 were evaluated. In this technique, we have placed the amniotic membrane on the ocular surface, and then simple tarsorrhaphy has been performed. We used this technique in our six patients during COVID-19 pandemic period at the bedside. The outcomes of corneal epithelial healing, visual acuity, pain score, patient tolerance, and adverse events were evaluated. Results Fourteen patients (eight females and six males) were included in the study. The mean age of the patients was 65.7 years (range 9-96 years). The mean follow-up period was 9 months (range 6-12 months). In all cases, epithelial defect healed completely and it was seen that this new technique facilitated resolution of pain and inflammation and promoted epithelialization in our 14 cases with resistant ocular surface pathologies. Post-operative pain score was significantly lower than pre-operative pain score (p<0.05). Conclusion Our results demonstrate that tarsorrhaphy with sutureless amniotic membrane accelerates the ocular surface healing process and increases the efficiency of amniotic membrane. This method has an important advantage that it can be performed at bedside. Patients and ophthalmologists need such an innovative treatment which is effortless, effective, and practical especially for the pandemic period.
Collapse
|
15
|
Odet S, Meyer C, Gaudet C, Weber E, Quenot J, Derruau S, Laurence S, Bompy L, Girodon M, Chatelain B, Mauprivez C, Brenet E, Kerdjoudj H, Zwetyenga N, Marchetti P, Hatzfeld AS, Toubeau D, Pouthier F, Lafarge X, Redl H, Fenelon M, Fricain JC, Di Pietro R, Ledouble C, Gualdi T, Parmentier AL, Louvrier A, Gindraux F. Tips and Tricks and Clinical Outcome of Cryopreserved Human Amniotic Membrane Application for the Management of Medication-Related Osteonecrosis of the Jaw (MRONJ): A Pilot Study. Front Bioeng Biotechnol 2022; 10:936074. [PMID: 35935507 PMCID: PMC9355383 DOI: 10.3389/fbioe.2022.936074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a complication of certain pharmacological treatments such as bisphosphonates, denosumab, and angiogenesis inhibitors. There are currently no guidelines on its management, particularly in advanced stages. The human amniotic membrane (hAM) has low immunogenicity and exerts anti-inflammatory, antifibrotic, antimicrobial, antiviral, and analgesic effects. It is a source of stem cells and growth factors promoting tissue regeneration. hAM acts as an anatomical barrier with suitable mechanical properties (permeability, stability, elasticity, flexibility, and resorbability) to prevent the proliferation of fibrous tissue and promote early neovascularization at the surgical site. In oral surgery, hAM stimulates healing and facilitates the proliferation and differentiation of epithelial cells in the oral mucosa and therefore its regeneration. We proposed using cryopreserved hAM to eight patients suffering from cancer (11 lesions) with stage 2-3 MRONJ on a compassionate use basis. A collagen sponge was added in some cases to facilitate hAM grafting. One or three hAMs were applied and one patient had a reapplication. Three patients had complete closure of the surgical site with proper epithelialization at 2 weeks, and two of them maintained it until the last follow-up. At 1 week after surgery, three patients had partial wound dehiscence with partial healing 3 months later and two patients had complete wound dehiscence. hAM reapplication led to complete healing. All patients remained asymptomatic with excellent immediate significant pain relief, no infections, and a truly positive impact on the patients' quality of life. No adverse events occurred. At 6 months of follow-up, 80% of lesions had complete or partial wound healing (30 and 50%, respectively), while 62.5% of patients were in stage 3. Radiological evaluations found that 85.7% of patients had stable bone lesions (n = 5) or new bone formation (n = 1). One patient had a worsening MRONJ but remained asymptomatic. One patient did not attend his follow-up radiological examination. For the first time, this prospective pilot study extensively illustrates both the handling and surgical application of hAM in MRONJ, its possible association with a collagen sponge scaffold, its outcome at the site, the application of multiple hAM patches at the same time, and its reapplication.
Collapse
Affiliation(s)
- Stéphane Odet
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Christophe Meyer
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Camille Gaudet
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Elise Weber
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Julie Quenot
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Stéphane Derruau
- Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France
- Université de Reims Champagne-Ardenne, Laboratoire BioSpecT EA-7506, UFR de Pharmacie, Reims, France
| | - Sebastien Laurence
- Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, HERVI EA3801, UFR de Médecine, Reims, France
| | - Lisa Bompy
- Chirurgie Maxillo-Faciale - Stomatologie - Chirurgie Plastique Réparatrice et Esthétique - Chirurgie de la main, CHU de Dijon, Dijon, France
| | - Marine Girodon
- Chirurgie Maxillo-Faciale - Stomatologie - Chirurgie Plastique Réparatrice et Esthétique - Chirurgie de la main, CHU de Dijon, Dijon, France
| | - Brice Chatelain
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Cédric Mauprivez
- Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Esteban Brenet
- Service d’ORL et chirurgie cervico-faciale, CHU Reims, Reims, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Narcisse Zwetyenga
- Chirurgie Maxillo-Faciale - Stomatologie - Chirurgie Plastique Réparatrice et Esthétique - Chirurgie de la main, CHU de Dijon, Dijon, France
| | - Philippe Marchetti
- Banque de Tissus CBP CHU Lille, Lille, France
- Institut de Cancérologie ONCOLILLE CANTHER, UMR9020 CNRS–U1277 Inserm—Université de Lille, Lille, France
| | - Anne-Sophie Hatzfeld
- Banque de Tissus CBP CHU Lille, Lille, France
- Institut de Cancérologie ONCOLILLE CANTHER, UMR9020 CNRS–U1277 Inserm—Université de Lille, Lille, France
| | | | - Fabienne Pouthier
- Activité d’Ingénierie Cellulaire et Tissulaire (AICT), Établissement Français du Sang Bourgogne Franche-Comté, Besançon, France
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Xavier Lafarge
- Établissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France
- INSERM U1035, Université de Bordeaux, Biothérapie des Maladies Génétiques Inflammatoires et Cancers (BMGIC), Bordeaux, France
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA, Research Center, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mathilde Fenelon
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Service de chirurgie orale, Bordeaux, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Service de chirurgie orale, Bordeaux, France
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Gabriele D’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Gabriele D’Annunzio Foundation, University of Chieti-Pescara, Chieti, Italy
| | - Charlotte Ledouble
- Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | | | | | - Aurélien Louvrier
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Florelle Gindraux
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
16
|
Bonvallet PP, Damaraju SM, Modi HN, Stefanelli VL, Lin Q, Saini S, Gandhi A. Biophysical Characterization of a Novel Tri-Layer Placental Allograft Membrane. Adv Wound Care (New Rochelle) 2022; 11:43-55. [PMID: 33975444 PMCID: PMC9831246 DOI: 10.1089/wound.2020.1315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: Placental tissues, including membranes composed of amnion and chorion, are promising options for the treatment of chronic wounds. Amnion and chorion contain multiple extracellular matrix (ECM) proteins and a multitude of growth factors and cytokines that, when used clinically, assist in the progression of difficult to heal wounds through restoration of a normal healing process. The objective of this study was to characterize the in vitro physical and biological properties of a dehydrated tri-layer placental allograft membrane (TPAM) consisting of a chorion layer sandwiched between two layers of amnion. Approach: Mechanical properties were evaluated by mechanical strength and enzyme degradation assays. The ECM composition of TPAM membranes was evaluated by histological staining while growth factors and cytokine presence was evaluated by a multiplex enzyme-linked immunosorbent assay. Proliferation, migration, and ECM secretion assays were performed with fibroblasts. Immunomodulatory properties were assessed by a pro-inflammatory cytokine reduction assay while the macrophage phenotype was determined by quantifying the ratio of M1 versus M2 secreted factors. Results: The unique three-layer construction improves mechanical handling properties over single- and bi-layer membranes. Results demonstrate that TPAM is rich in ECM proteins, growth factors, cytokines, and tissue inhibitors of metalloproteinases, and favorably influences fibroblast migration, proliferation, and ECM secretion when compared to negative controls. Furthermore, after processing and preservation, these membranes maintain their intrinsic immunomodulatory properties with the ability to suppress pro-inflammatory processes and modulate the M1 and M2 macrophage phenotype toward a pro-regenerative profile when compared to a negative control. Innovation: This is the first study to characterize both the biophysical and biological properties of a tri-layer placental membrane. Conclusion: This work demonstrates that TPAM has improved handling characteristics over single- and bi-layer membranes, stimulates pro-healing cellular responses, and advantageously modulates inflammatory responses, altogether making this scaffold a promising option for treating wounds, especially those that are complex or difficult to heal.
Collapse
Affiliation(s)
- Paul P. Bonvallet
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
- Correspondence: Product Development, Integra Life Sciences, Corp., 1100 Campus Road, Princeton, NJ 08540, USA.
| | - Sita M. Damaraju
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| | - Heli N. Modi
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| | | | - Qiaoling Lin
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| | - Sunil Saini
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| | - Ankur Gandhi
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| |
Collapse
|
17
|
Becktell L, Matuska AM, Hon S, Delco ML, Cole BJ, Begum L, Zhang S, Fortier LA. Proteomic Analysis and Cell Viability of Nine Amnion, Chorion, Umbilical Cord, and Amniotic Fluid-Derived Products. Cartilage 2021; 13:495S-507S. [PMID: 33356465 PMCID: PMC8804846 DOI: 10.1177/1947603520976767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Amnion products are used in various musculoskeletal surgeries and as injections for joint pain with conflicting reports of cell viability and protein contents. The objective of this study was to determine the full proteome and examine cell viability in 9 commercial amnion products using an unbiased bottom-up shotgun proteomics approach and confocal microscopy. DESIGN Products were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and searched against a UniProt Homo sapiens database. Relative protein abundance was determined for each sample. Based on proteomics results, lumican was measured by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis was performed for interleukin-1 receptor antagonist (IL-1Ra) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2). Cell viability was determined by calcein AM (live) and ethidium homodimer (dead) staining and confocal microscopy. RESULTS Proteomic analysis revealed 919 proteins in the nine products. Proteins were primarily collagens, keratin, and albumin. Lumican, a small leucine-rich proteoglycan (SLRP) was found in all samples. Western blot analysis for IL-1Ra and TIMP-2 indicated presence of both proteins, with nonspecific antibody binding also present in all samples. No live cells were identified in any product. CONCLUSIONS Several novel proteins were identified through proteomics that might impart the beneficial effects of amnion products, including SLRPs, collagens, and regulators of fibroblast activity. IL-1Ra and TIMP-2 were identified, but concentrations measured by ELISA may be falsely increased due to nonspecific antibody binding. The concept that the amnion tissues provide live cells to aid in tissue regeneration cannot be supported by the findings of this study.
Collapse
Affiliation(s)
- Liliya Becktell
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | | | - Stephanie Hon
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | | | - Brian J. Cole
- Midwest Orthopedics at Rush, Rush
University Medical Center, Chicago, IL, USA
| | - Laila Begum
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility,
Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Lisa A. Fortier
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA,Lisa A. Fortier, Department of Clinical
Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road,
Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Ghomi ER, Shakiba M, Ardahaei AS, Akbari M, Faraji M, Ataei S, Kohansal P, Jafari I, Abdouss M, Ramakrishna S. Innovations in drug delivery for chronic wound healing. Curr Pharm Des 2021; 28:340-351. [PMID: 34269663 DOI: 10.2174/1381612827666210714102304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a varied and complex process designed to promptly restore standard skin structure, function, and appearance. To achieve this goal, different immune and biological systems participate in coordination through four separate steps, including homeostasis, inflammation, proliferation, and regeneration. Each step involves the function of other cells, cytokines, and growth factors. However, chronic ulcers, which are classified into three types of ulcers, namely vascular ulcers, diabetic ulcers, and pressure ulcers, cannot heal through the mentioned natural stages. It causes mental and physical problems for these people and, as a result, imposes high economic and social costs on society. In this regard, using a system that can accelerate the healing process of such chronic wounds, as an urgent need in the community, should be considered. Therefore, in this study, the innovations of drug delivery systems for the healing of chronic wounds using hydrogels, nanomaterial, and membranes are discussed and reviewed.
Collapse
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117581, Singapore
| | | | - Ali Saedi Ardahaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, P.O. Box 491888369, Iran
| | - Mahsa Akbari
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Shahla Ataei
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Parisa Kohansal
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Iman Jafari
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117581, Singapore
| |
Collapse
|
19
|
McQuilling JP, Carter MJ, Fulton JA, Patel K, Doner B, Serena TE, Mowry KC. A prospective clinical trial evaluating changes in the wound microenvironment in patients with chronic venous leg ulcers treated with a hypothermically stored amniotic membrane. Int Wound J 2021; 19:144-155. [PMID: 33955178 PMCID: PMC8684864 DOI: 10.1111/iwj.13606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/09/2021] [Indexed: 01/23/2023] Open
Abstract
Amniotic tissues have been long utilised to treat chronic wounds; however, there are few studies evaluating how the wound microenvironment responds to these therapies. The goal of this study was to evaluate the changes in wounds treated with a hypothermically stored amniotic membrane (HSAM). In this prospective single‐arm study, 15 female patients with venous leg ulcers were treated with HSAM from male donors and standard of care for 12 weeks. Over the course of the study, wound exudate was collected and evaluated using proteomic microarrays. Biopsies were collected during the course of treatment to detect the presence of HSAM tissue. By 4 weeks, 60% of subjects achieved 50% or greater reduction in wound size, and by 12 weeks, 53% of subjects achieved 100% re‐epithelialization. HSAM DNA was detected in 20% of biopsies as determined by the detection TSPY4, indicating HSAM was no longer present within the wound bed approximately 7 days from the last treatment for the majority of wounds. Proteomic analysis of wound exudate found that wounds on a healing trajectory had significantly higher levels of MMP‐10, MMP‐7, and TIMP‐4 and significantly lower levels of CX3CL1, FLT‐3 L, IL‐1ra, IL‐1a, IL‐9, IL‐2, IL‐3, MCP‐1, and TNF‐b compared with other wounds.
Collapse
Affiliation(s)
| | | | | | - Keyur Patel
- Armstrong CM Hospital, The Snyder Institute, Kittaning, Pennsylvania, USA
| | - Bryan Doner
- SerenaGroup Inc., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
20
|
Moore MC, Bonvallet PP, Damaraju SM, Modi HN, Gandhi A, McFetridge PS. Biological characterization of dehydrated amniotic membrane allograft: Mechanisms of action and implications for wound care. J Biomed Mater Res B Appl Biomater 2020; 108:3076-3083. [PMID: 32458591 DOI: 10.1002/jbm.b.34635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/31/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023]
Abstract
There is a growing clinical demand in the wound care market to treat chronic wounds such as diabetic foot ulcers. Advanced cell and tissue-based products (CTPs) are often used to address challenging chronic wounds where healing has stalled. These products contain active biologics such as growth factors and cytokines as well as structural components that support and stimulate cell growth and assist in tissue regeneration. This study addresses the in vitro biologic effects of a clinically available dehydrated amniotic membrane allograft (DAMA). The broad mechanism of action results from DAMA's biologic composition that leads to stimulation of cell migration cell proliferation, and reduction of pro-inflammatory cytokines. Results show that DAMA possesses growth factors and cytokines such as EGF, FGF, PDGFs, VEGF, TGF-β, IL-8, and TIMPs 1 and 2. Furthermore, in vitro experiments demonstrate that DAMA stimulates cell proliferation, cell migration, secretion of collagen type I, and the reduction of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. This study findings are consistent with the clinical benefits previously published for DAMA and other CTPs in chronic wounds suggesting that the introduction of DAMA to non-healing, complex wounds helps to improve the wound milieu by providing essential structural components, cytokines, and growth factors to create an appropriate environment for wound healing.
Collapse
Affiliation(s)
- Marc C Moore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul P Bonvallet
- Product Development, Integra LifeSciences, Princeton, New Jersey, 08540, USA
| | - Sita M Damaraju
- Product Development, Integra LifeSciences, Princeton, New Jersey, 08540, USA
| | - Heli N Modi
- Product Development, Integra LifeSciences, Princeton, New Jersey, 08540, USA
| | - Ankur Gandhi
- Product Development, Integra LifeSciences, Princeton, New Jersey, 08540, USA
| | - Peter S McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Serena TE, Yaakov R, Moore S, Cole W, Coe S, Snyder R, Patel K, Doner B, Kasper MA, Hamil R, Wendling S, Sabolinski ML. A randomized controlled clinical trial of a hypothermically stored amniotic membrane for use in diabetic foot ulcers. J Comp Eff Res 2020; 9:23-34. [DOI: 10.2217/cer-2019-0142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Determine the effectiveness of hypothermically stored amniotic membrane (HSAM) versus standard of care (SOC) in diabetic foot ulcers (DFUs). Methods: A randomized controlled trial was conducted on 76 DFUs analyzed digitally. Results: Cox wound closure for HSAM (38 wounds) was significantly greater (p = 0.04) at weeks 12 (60 vs 38%), and 16 (63 vs 38%). The probability of wound closure increased by 75% (Hazard Ratio = 1.75; 95% CI: 1.16–2.70). HSAM showed >60% reductions in area (82 vs 58%; p = 0.02) and depth (65 vs 39%; p = 0.04) versus SOC. Conclusion: HSAM increased frequency and probability of wound closure in DFUs versus SOC.
Collapse
Affiliation(s)
| | - Raphael Yaakov
- SerenaGroup® Research Foundation, Cambridge, MA 02140, USA
| | - Sarah Moore
- SerenaGroup® Research Foundation, Cambridge, MA 02140, USA
| | - Windy Cole
- Kent State University College of Podiatric Medicine, Independence, OH 44131, USA
| | - Stacey Coe
- Kent State University College of Podiatric Medicine, Independence, OH 44131, USA
| | - Rob Snyder
- Barry University School of Podiatry Medicine, North Miami Beach, FL 33168, USA
| | - Keyur Patel
- D & P Medical Group, Pittsburgh, PA 15237, USA
| | - Bryan Doner
- D & P Medical Group, Pittsburgh, PA 15237, USA
| | | | - Rachel Hamil
- SerenaGroup® Research Foundation, Cambridge, MA 02140, USA
| | | | | |
Collapse
|
22
|
McQuilling JP, Burnette M, Kimmerling KA, Kammer M, Mowry KC. A mechanistic evaluation of the angiogenic properties of a dehydrated amnion chorion membrane in vitro and in vivo. Wound Repair Regen 2019; 27:609-621. [PMID: 31425636 PMCID: PMC6900065 DOI: 10.1111/wrr.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
Abstract
Angiogenesis is essential for the successful repair of tissues; however, in many chronic conditions, angiogenesis is inhibited. Placental tissues have been shown to illicit an angiogenic response both in vitro and in vivo, and the angiogenic properties of these tissues likely contribute to observed clinical outcomes. Although there is some work describing the angiogenic effects of these tissues, comparatively little has been done to determine the possible mechanisms responsible for this effect. The purpose of this study was to conduct a thorough evaluation of a commercially available dehydrated amnion chorion membrane to better understand how these tissues may promote angiogenesis. The proteomic content of this tissue was evaluated using a high throughput proteomic microarray, and then the effects of these grafts were evaluated in vivo using subcutaneous gelfoam sponge implants containing conditioned media (CM) from the graft. Human microvascular endothelial cells were then used to determine how released factors effect migration, proliferation, gene expression, and protein production in vitro. Finally, to elucidate potential signaling‐pathways through which tissue‐derived factors act to induce pro‐angiogenetic phenotypes in endothelial cells in vitro, we performed a global analysis of both serine/threonine and tyrosine kinase activity. Kinomic and proteomic data were then combined to generate protein–protein interaction networks that enabled the identification of multiple growth factors and cytokines with both pro‐ and anti‐angiogenetic properties. In vivo, the addition of CM resulted in increased CD31 and αSMA staining and increases in pro‐angiogenic gene expression. In vitro, CM resulted in significant increases in endothelial proliferation, migration, and the expression of granulocyte‐macrophage colony‐stimulating factor, hepatocyte growth factor, and transforming growth factor beta‐3. Integrated kinomic analysis implicated ERK1/2 signaling as the primary pathway activated following culture of endothelial cells with dehydrated amnion/chorion membrane (dACM) CM. In conclusion, dACM grafts triggered pro‐angiogenic responses both in vitro and in vivo that are likely at least partially mediated by ERK1/2 signaling.
Collapse
Affiliation(s)
- John P McQuilling
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Miranda Burnette
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Kelly A Kimmerling
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - MaryRose Kammer
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Katie C Mowry
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| |
Collapse
|
23
|
Hatzfeld AS, Pasquesoone L, Germain N, Danzé PM, Drucbert AS, Tardivel M, Bongiovanni A, Duquennoy-Martinot V, Guerreschi P, Marchetti P. Benefits of cryopreserved human amniotic membranes in association with conventional treatments in the management of full-thickness burns. Int Wound J 2019; 16:1354-1364. [PMID: 31429202 DOI: 10.1111/iwj.13198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022] Open
Abstract
The use of split-thickness skin autografts (STSA) with dermal substitutes is the gold standard treatment for third-degree burn patients. In this article, we tested whether cryopreserved amniotic membranes could be beneficial to the current treatments for full-thickness burns. Swines were subjected to standardised full-thickness burn injuries, and then were randomly assigned to treatments: (a) STSA alone; (b) STSA associated with the dermal substitute, Matriderm; (c) STSA plus human amniotic membrane (HAM); and (d) STSA associated with Matriderm plus HAM. Clinical and histological assessments were performed over time. We also reported the clinical use of HAM in one patient. The addition of HAM to classic treatments reduced scar contraction. In the presence of HAM, skin wound healing displayed high elasticity and histological examination showed a dense network of long elastic fibres. The presence of HAM increased dermal neovascularization, but no effect was observed on the recruitment of inflammatory cells to the wound. Moreover, the use of HAM with classical treatments in one human patient revealed a clear benefit in terms of elasticity. These results give initial evidence to consider the clinical application of HAM to avoid post-burn contractures and therefore facilitate functional recovery after deep burn injury.
Collapse
Affiliation(s)
| | | | - Nicolas Germain
- Tissue Bank of Lille, Biology Pathology Center, CHU of Lille, Lille, France.,Inserm UMR-S-1172, University of Lille, Lille, France
| | - Pierre-Marie Danzé
- Tissue Bank of Lille, Biology Pathology Center, CHU of Lille, Lille, France
| | | | | | | | | | | | - Philippe Marchetti
- Tissue Bank of Lille, Biology Pathology Center, CHU of Lille, Lille, France.,Inserm UMR-S-1172, University of Lille, Lille, France
| |
Collapse
|
24
|
Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv Drug Deliv Rev 2019; 146:190-208. [PMID: 29879493 DOI: 10.1016/j.addr.2018.06.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/18/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Growth factors (GFs) are versatile signalling molecules that orchestrate the dynamic, multi-stage process of wound healing. Delivery of exogenous GFs to the wound milieu to mediate healing in an active, physiologically-relevant manner has shown great promise in laboratories; however, the inherent instability of GFs, accompanied with numerous safety, efficacy and cost concerns, has hindered the clinical success of GF delivery. In this article, we highlight that the key to overcoming these challenges is to enhance the control of the activities of GFs throughout the delivering process. We summarise the recent strategies based on biomaterials matrices and molecular engineering, which aim to improve the conditions of GFs for delivery (at the 'supply' end of the delivery), increase the stability and functions of GFs in extracellular matrix (in transportation to target cells), as well as enhance the GFs/receptor interaction on the cell membrane (at the 'destination' end of the delivery). Many of these investigations have led to encouraging outcomes in various in vitro and in vivo regenerative models with considerable translational potential.
Collapse
|
25
|
McQuilling JP, Kimmerling KA, Staples MC, Mowry KC. Evaluation of two distinct placental-derived membranes and their effect on tenocyte responses in vitro. J Tissue Eng Regen Med 2019; 13:1316-1330. [PMID: 31062484 PMCID: PMC6771722 DOI: 10.1002/term.2876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/05/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022]
Abstract
Tendon healing is a complex, multiphase process that results in increased scar tissue formation, leading to weaker tendons. The purpose of this study was to evaluate the response of tenocytes to both hypothermically stored amniotic membrane (HSAM) and dehydrated amnion/chorion membrane (dACM). Composition and growth factor release from HSAM and dACM were evaluated using proteomics microarrays. HSAM and dACM releasate was used to assess tenocyte proliferation, migration, gene expression, extracellular matrix (ECM) protein deposition, and response to inflammation. Additionally, tenocyte-ECM interactions were evaluated. HSAM and dACM contain and release growth factors relevant to tendon healing, including insulin-like growth factor I, platelet-derived growth factor, and basic fibroblast growth factor. Both dACM and HSAM promoted increased tenocyte proliferation and migration; tenocytes treated with dACM proliferated more robustly, whereas treatment with HSAM resulted in higher migration. Both dACM and HSAM resulted in altered ECM gene expression; dACM grafts alone resulted in increases in collagen deposition. Furthermore, both allografts resulted in altered tenocyte responses to inflammation with reduced transforming growth factor beta levels. Additionally, dACM treatment resulted in increased expression and production of matrix metalloprotease-1 (MMP-1), whereas HSAM treatment resulted in decreased production of MMP-1. Tenocytes migrated into and remodeled HSAM only. These results indicate that both grafts have properties that support tendon healing; however, the results presented here suggest that the responses to each type of graft may be different. Due to the complex environment during tendon repair, additional work is needed to evaluate these effects using in vivo models.
Collapse
Affiliation(s)
| | | | | | - Katie C Mowry
- Research and Development, Organogenesis, Birmingham, Alabama
| |
Collapse
|
26
|
McQuilling JP, Kammer M, Kimmerling KA, Mowry KC. Characterisation of dehydrated amnion chorion membranes and evaluation of fibroblast and keratinocyte responses in vitro. Int Wound J 2019; 16:827-840. [PMID: 30854789 PMCID: PMC6850092 DOI: 10.1111/iwj.13103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study is to characterise the composition of a dehydrated amnion and chorion graft and investigate how factors released from this graft interact with cells important to the wound microenvironment using in vitro models. Characterisation was completed by proteomic analysis of growth factors and cytokines, evaluation of matrix components and protease inhibition, immunohistochemistry, and in vitro release of key growth factors and cytokines. To evaluate the effect of released factors on cells found within the microenvironment, in vitro assays including: cell proliferation, migration, gene expression, protein production, and intracellular pathway activation were used; additionally, responses of fibroblasts in the context of inflammation were measured. We found that released factors from dehydrated amnion/chorion membranes (dACM) stimulated cell proliferation, migration, and altered gene and protein expression profiles of cells important for wound repair in vitro. When cells were cultured in the presence of pro‐inflammatory cytokines, the addition of releasate from dACM resulted in an altered production of cytokines, including a reduction of pro‐inflammatory regulated on activation, normal T cell expressed and secreted (RANTES). In sum, the results presented here characterise the components of dACM, and in vitro studies were used to evaluate interactions of dACM with cell types important in wound healing.
Collapse
Affiliation(s)
| | - MaryRose Kammer
- Research and Development, Organogenesis Inc., Birmingham, Alabama
| | | | - Katie C Mowry
- Research and Development, Organogenesis Inc., Birmingham, Alabama
| |
Collapse
|
27
|
Kimmerling KA, McQuilling JP, Staples MC, Mowry KC. Tenocyte cell density, migration, and extracellular matrix deposition with amniotic suspension allograft. J Orthop Res 2019; 37:412-420. [PMID: 30378182 PMCID: PMC6587843 DOI: 10.1002/jor.24173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/22/2018] [Indexed: 02/04/2023]
Abstract
Amniotic suspension allografts (ASA), derived from placental tissues, contain particulated amniotic membrane and amniotic fluid cells. Recently, ASA and other placental-derived allografts have been used in orthopaedic applications, including tendinopathies and tendon injuries. The purpose of this study was to determine the potential effects of ASA on tenocyte cell density, migration, and responses to inflammatory stimuli. Tenocyte cell density was measured using AlamarBlue over multiple time points, while migration was determined using a Boyden chamber assay. Deposition of ECM markers were measured using BioColor kits. Gene expression and protein production of cytokines and growth factors following stimulus with pro-inflammatory IL-1β and TNF-α was measured using qPCR and ELISAs. Conditioned media (CM) was made from ASA and used for all assays in this study. In vitro, ASA CM treatment significantly promoted tenocyte increases in cell density and migration compared to assay media controls. ASA CM also increased the deposition of extracellular matrix (ECM) proteins, including collagen, elastin, and sGAG. Following inflammatory stimulation and treatment with ASA CM, tenocytes downregulated IL-8 gene expression, a pro-inflammatory cytokine normally elevated during the inflammatory phase of tendon healing. Additionally, tenocytes treated with ASA CM had significantly lower protein levels of TGF-β1 compared to controls. This study evaluated ASA and its effect on tenocytes; specifically, treatment with ASA resulted in increased cell density, more robust migration and matrix deposition, and some alteration of inflammatory targets. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:412-420, 2019.
Collapse
Affiliation(s)
| | | | - Miranda C. Staples
- Milestone Research Organization4901 Morena Blvd, Suite 132San DiegoCalifornia92117
| | - Katie C. Mowry
- Organogenesis Inc.2641 Rocky Ridge LaneBirmingham, AL 35216
| |
Collapse
|
28
|
McQuilling JP, Sanders M, Poland L, Sanders M, Basadonna G, Waldrop NE, Mowry KC. Dehydrated Amnion/Chorion Improves Achilles Tendon Repair in a Diabetic Animal Model. WOUNDS : A COMPENDIUM OF CLINICAL RESEARCH AND PRACTICE 2019; 31:19-25. [PMID: 30372415 PMCID: PMC7989034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Healing of tendon injuries is often plagued by significant scar formation and compromised biomechanical function. For those with diabetes, these injuries are further complicated by alterations to the extracellular matrix of the tendon, poor circulation, and delayed wound healing; consequently, complications and re-rupture rates for patients with diabetes are reported higher than the typical patient population. Placental derived membranes, specifically dehydrated human amnion/chorion membranes (dACMs), have been utilized clinically as an adhesion barrier, and these membranes have been shown to reduce scarring and aid in tissue repair. OBJECTIVE The purpose of this study was to evaluate the effect of dACMs on tendon repair in a diabetic model with impaired healing. MATERIALS AND METHODS Using a type II diabetic model (BBZDR/WOR rats), a full-thickness injury was made through the Achilles tendon and repaired using a modified Kessler method. Repaired tendons were wrapped with dACM or left unwrapped as a control (n = 15/group; n = 30 total). Tendons were retrieved at 14 (n = 5/group; n = 10 total) or 28 days (n = 10/group; n = 20 total) and evaluated using histology, immunofluorescence, and biomechanical testing. RESULTS Treatment of tendons with dACM resulted in reduced failure rates, increased cell migration, and improved mechanical properties (compared with unwrapped controls). The dACM-treated tendons also showed changes in the production of several important biomarkers to tendon healing at both 14 and 28 days; most notably, Scleraxis was found to be upregulated in dACM-treated tendons. CONCLUSIONS This study highlights a promising treatment option for this challenging clinical population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katie C. Mowry
- Organogenesis Inc, Research and Development, Birmingham, AL
| |
Collapse
|
29
|
Röck T, Bösmüller HC, Bartz-Schmidt KU, Röck D. Surgical management of a conjunctival nevus with amniotic membrane transplantation. Int Med Case Rep J 2018; 11:161-165. [PMID: 30100765 PMCID: PMC6067617 DOI: 10.2147/imcrj.s164099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Nevi of the conjunctiva are usually benign pigmented tumorous lesions located in the bulbar conjunctiva. In most conjunctival nevus cases, the patient wants the lesion to be removed for cosmetic reasons, but excisional biopsies are best for lesions suspicious for malignancy. This case report illustrates the intraoperative surgical management, histological findings, and the course of healing in a conjunctival nevus patient. Case report A 26-year-old man was referred to our eye hospital with a large bulbar conjunctival nevus of the right eye. Upon examination, there was a large pigmented lesion with numerous small cysts present on the superior bulbar conjunctiva. The conjunctival tumor was resected, and an amniotic membrane transplantation was performed for the bulbar conjunctival reconstruction. The histopathological diagnosis suggested a conjunctival nevus. After the resection, a reduction in the inflammation and healing of the conjunctival lesion could be seen. The epithelialization of the bulbar conjunctiva over the amniotic membrane was complete 4 weeks after the resection. At the 6-month follow-up, there was no sign of recurrence or any postoperative complications. Conclusion A surgical excision combined with reconstruction via amniotic membrane transplantation is effective and economical for the treatment of large conjunctival lesions.
Collapse
Affiliation(s)
- Tobias Röck
- Centre for Ophthalmology, University of Tübingen, Tübingen, Germany,
| | | | | | - Daniel Röck
- Centre for Ophthalmology, University of Tübingen, Tübingen, Germany,
| |
Collapse
|
30
|
Röck T, Bartz-Schmidt KU, Landenberger J, Bramkamp M, Röck D. Amniotic Membrane Transplantation in Reconstructive and Regenerative Ophthalmology. Ann Transplant 2018. [PMID: 29507278 PMCID: PMC6248296 DOI: 10.12659/aot.906856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background The goal of this study was to investigate numbers, indications, surgical techniques, and experiences of amniotic membrane transplantation at the University Eye Hospital Tübingen over the last 16 years. Material/Methods Data from all amniotic membrane transplantations from January 2001 to December 2016 were retrospectively analyzed. Data was accessed from the electronic database and the annual reports of the Eye Bank at the University Eye Hospital Tübingen. Results A total of 771 amniotic membrane transplantations were performed between 2001 and 2016 at the University Eye Hospital Tübingen. The mean number of amniotic membrane transplantations was 48 per year (range: 7–81). Overall, the mean number of amniotic membrane transplantations more than doubled, from 31 amniotic membrane transplantations per year during the first 8-year period to 66 amniotic membrane transplantations per year during the second 8-year period (p<0.0001). The most common surgical indications for amniotic membrane transplantation were corneal ulcers and persistent corneal epithelial defects. The inlay, overlay, and sandwich technique became the favored surgical methods for various disorders of the ocular surface. Conclusions Our study showed a significant increase of amniotic membrane transplantations from 2001 to 2016. This increase is likely influenced by the introduction of different surgical amniotic membrane transplantation techniques, the rising knowledge about containing growth factors, neurotrophins and cytokines, and the demographic change with aging of the population.
Collapse
Affiliation(s)
- Tobias Röck
- Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | | | - Matthias Bramkamp
- Department of General Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Röck
- Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
McQuilling JP, Vines JB, Kimmerling KA, Mowry KC. Proteomic Comparison of Amnion and Chorion and Evaluation of the Effects of Processing on Placental Membranes. WOUNDS : A COMPENDIUM OF CLINICAL RESEARCH AND PRACTICE 2017; 29:E36-E40. [PMID: 28682294 PMCID: PMC8009308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The purpose of this study is to compare the growth factor and cytokine content found within the amnion and chorion layers and to determine the effects of dehydration on them. MATERIALS AND METHODS Placentas were collected from 5 to 6 consented donors following elective cesarean section, and 1-cm2 sections of either amnion or chorion were immediately stored at -80°C or dehydrated prior to -80°C storage until proteomic analysis. Signaling molecules from tissue samples were evaluated using quantitative multiplex proteomics microarrays, and data were analyzed based on a per cm2 basis and also on pg/mg of extracted protein for potency. RESULTS Fresh chorion contained more of some signaling molecules per cm2 compared with amnion. Specifically, the chorion contained significantly higher levels of adiponectin, APN, ANG-2, bFGF, EG-VEGF, HGF, IGF-1, PDGF-AA, PDGF-BB, TIMP-2, and TIMP-4. When samples were dehydrated, a significant drop in total growth factor and cytokine content was observed in both amnion and chorion samples with a loss of 51.1% ± 20.2% and 55.5% ± 37.3%, respectively. When evaluating the potency of fresh amnion and fresh chorion, there were similar levels of signaling molecules found with some exceptions. Amnion had significantly higher GAL-7, TGF-β1, and IL-1F5, and chorion had significantly more EG-VEGF, PDGF-BB, and TIMP-2. CONCLUSION The processing of placental membranes can have a dramatic effect on the total growth factor and cytokine load found within these tissues.
Collapse
Affiliation(s)
| | - Jeremy B Vines
- NuTech, a division of Organogenesis, Inc, Birmingham, AL
| | | | - Katie C Mowry
- NuTech, a division of Organogenesis, Inc, Birmingham, AL
| |
Collapse
|