1
|
Sun Z, Sun J, Su G, Wang R, Zhai Z, Yu F, Li Y. A comparative study of the established methods and evaluation of rat trauma models. Animal Model Exp Med 2025; 8:501-510. [PMID: 39439109 PMCID: PMC11904095 DOI: 10.1002/ame2.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Scientific animal models are indispensable for studying trauma repair. This work aimed at establishing a more scientific rat trauma model by studying different rat trauma models caused by different trauma numbers, locations, and trauma attachment tension unloaders and rat age. METHODS A four-trauma self-upper, lower, left and right control model; a two-trauma self-trauma bare and ring control model; and a young and old rat trauma model were created to evaluate the condition of these traumas. RESULTS In the four-trauma self-control model, the healing status of the upper proximal cephalic trauma was better than that of the lower proximal caudal trauma, whereas there was no significant difference between the left and right trauma. The healing rate and postwound condition of the trauma with a ring control in the two-trauma model were better than those of the bare side. The healing speed of the old rats was slower, and the amount of extracellular matrix in the subcutaneous tissue after healing was significantly lower than that of the young rats. CONCLUSION The double trauma with a ring is a more scientific and reasonable experimental model. There is a significant difference between young and old rats in the wound healing process. Therefore, the appropriate age of the rats should be selected according to the main age range of the patients with similar conditions in the clinical setting being mimicked.
Collapse
Affiliation(s)
- Zhenmin Sun
- Qingdao HospitalUniversity of Health and Rehabilitation Sciences, Qingdao Municipal HospitalQingdaoChina
- Shandong Second Medical UniversityWeifangChina
| | - Jia Sun
- Shandong Second Medical UniversityWeifangChina
| | - Gang Su
- Shandong Second Medical UniversityWeifangChina
| | - Ruohan Wang
- Shandong Second Medical UniversityWeifangChina
| | | | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si‐Zr‐Ti Resources, College of Materials Science and EngineeringHainan UniversityHaikouChina
| | - Yuli Li
- Qingdao HospitalUniversity of Health and Rehabilitation Sciences, Qingdao Municipal HospitalQingdaoChina
| |
Collapse
|
2
|
Fan Y, Zhang Z, Yang X, Yang H, Deng P, Zhao Z. Alleviation of volatile fatty acids inhibition in anaerobic digestion of swine manure with nano-bubble water supplementation. BIORESOURCE TECHNOLOGY 2024; 411:131304. [PMID: 39155019 DOI: 10.1016/j.biortech.2024.131304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Nano-bubble water (NBW) was applied to anaerobic digestion (AD) to alleviate volatile fatty acids (VFAs) inhibition, improve the buffering capacity and CH4 production in this work. Results indicated that NBW accelerated the consumption of VFAs and prevented inhibition due to VFAs accumulation. Additionally, NBW facilitated a rapid increase in partial alkalinity (PA) and total alkalinity (TA) as well as a corresponding rapid decrease in intermediate alkalinity (IA)/PA and VFA/TA, thereby improving buffering capacity and alleviating VFAs inhibition. Moreover, CH4 production improved by more than 12.2% by NBW. Similarly, the activities of the extracellular hydrolases and coenzyme F420 increased. Besides, NBW increased the abundance of microbial community and strengthened the metabolic pathways of hydrogenotrophic methanogens, which could be the intrinsic mechanism by which NBW alleviated VFAs inhibition, improved system stability, and increased CH4 production. This study demonstrates that NBW supplementation can be an effective method for mitigating frequent VFAs inhibition.
Collapse
Affiliation(s)
- Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Ziyang Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xiaojing Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Haibo Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Peng Deng
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Ziwen Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China.
| |
Collapse
|
3
|
Qu Z, Wang Y, Dong Y, Li X, Hao L, Sun L, Zhou L, Jiang R, Liu W. Intelligent electrospinning nanofibrous membranes for monitoring and promotion of the wound healing. Mater Today Bio 2024; 26:101093. [PMID: 38818528 PMCID: PMC11137601 DOI: 10.1016/j.mtbio.2024.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
The incidence of chronic wound healing is promoted by the growing trend of elderly population, obesity, and type II diabetes. Although numerous wound dressings have been studied over the years, it is still challenging for many wound dressings to perfectly adapt to the healing process due to the dynamic and complicated wound microenvironment. Aiming at an optimal reproduction of the physiological environment, multifunctional electrospinning nanofibrous membranes (ENMs) have emerged as a promising platform for the wound treatment owing to their resemblance to extracellular matrix (ECM), adjustable preparation processes, porousness, and good conformability to the wound site. Moreover, profiting from the booming development of human-machine interaction and artificial intelligence, a next generation of intelligent electrospinning nanofibrous membranes (iENMs) based wound dressing substrates that could realize the real-time monitoring of wound proceeding and individual-based wound therapy has evoked a surge of interest. In this regard, general wound-related biomarkers and process are overviewed firstly and representative iENMs stimuli-responsive materials are briefly summarized. Subsequently, the emergent applications of iENMs for the wound healing are highlighted. Finally, the opportunities and challenges for the development of next-generation iENMs as well as translating iENMs into clinical practice are evaluated.
Collapse
Affiliation(s)
- Zhi Qu
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong Province, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yang Wang
- Department of Plastic and Reconstructive Surgery, Cell & Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, 41944, South Korea
| | - Yanhong Dong
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xinmeng Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Lingwan Hao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liwei Sun
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Lu Zhou
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Weihua Liu
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong Province, China
| |
Collapse
|
4
|
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, Nguyen NT, An H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv 2023; 63:108091. [PMID: 36592661 DOI: 10.1016/j.biotechadv.2022.108091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanobubbles are gaseous entities suspended in bulk liquids that have widespread beneficial usage in many industries. Nanobubbles are already proving to be versatile in furthering the effectiveness of disease treatment on cellular and molecular levels. They are functionalized with biocompatible and stealth surfaces to aid in the delivery of drugs. At the same time, nanobubbles serve as imaging agents due to the echogenic properties of the gas core, which can also be utilized for controlled and targeted delivery. This review provides an overview of the biomedical applications of nanobubbles, covering their preparation and characterization methods, discussing where the research is currently focused, and how they will help shape the future of biomedicine.
Collapse
Affiliation(s)
- Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
5
|
Ngeow WC, Tan CC, Goh YC, Deliberador TM, Cheah CW. A Narrative Review on Means to Promote Oxygenation and Angiogenesis in Oral Wound Healing. Bioengineering (Basel) 2022; 9:636. [PMID: 36354548 PMCID: PMC9688034 DOI: 10.3390/bioengineering9110636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 08/22/2023] Open
Abstract
Oral mucosa serves as the primary barrier against pathogen invasions, mechanical stresses, and physical trauma. Although it is generally composed of keratinocytes and held in place by desmosomes, it shows variation in tissue elasticity and surface keratinization at different sites of the oral cavity. Wound healing undergoes four stages of tissue change sequences, namely haemostasis, inflammation, proliferation, and remodelling. The wound healing of oral hard tissue and soft tissue is largely dependent on the inflammatory response and vascular response, which are the targets of many research. Because of a less-robust inflammatory response, favourable saliva properties, a unique oral environment, and the presence of mesenchymal stem cells, oral wounds are reported to demonstrate rapid healing, less scar formation, and fewer inflammatory reactions. However, delayed oral wound healing is a major concern in certain populations with autoimmune disorders or underlying medical issues, or those subjected to surgically inflicted injuries. Various means of approach have been adopted to improve wound tissue proliferation without causing excessive scarring. This narrative review reappraises the current literature on the use of light, sound, mechanical, biological, and chemical means to enhance oxygen delivery to wounds. The current literature includes the use of hyperbaric oxygen and topical oxygen therapy, ultrasounds, lasers, platelet-rich plasma (PRP)/platelet-rich fibrin (PRF), and various chemical agents such as hyaluronic acid, astaxanthin, and Centella asiatica to promote angiogenesis in oral wound healing during the proliferation process. The arrival of a proprietary oral gel that is reported to improve oxygenation is highlighted.
Collapse
Affiliation(s)
- Wei Cheong Ngeow
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chuey Chuan Tan
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yet Ching Goh
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Chia Wei Cheah
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|