1
|
Xie R, Huang X, Liu Q, Liu M. Positive association between high-density lipoprotein cholesterol and bone mineral density in U.S. adults: the NHANES 2011-2018. J Orthop Surg Res 2022; 17:92. [PMID: 35168655 PMCID: PMC8848786 DOI: 10.1186/s13018-022-02986-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Serum lipids are highly inheritable and play a major role in bone health. However, the relationship between high-density lipoprotein cholesterol (HDL-C) and bone mineral density (BMD) remains uncertain. The goal of this study was to see if there was a link between HDL-C levels and BMD in persons aged 20-59. METHODS Multivariate logistic regression models were used to determine the link between HDL-C and lumbar BMD using data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. Generalized additive models and fitted smoothing curves were also used. RESULTS The analysis included a total of 10,635 adults. After controlling for various variables, we discovered that HDL-C was positively linked with lumbar BMD. The favorable connection of HDL-C with lumbar BMD was maintained in subgroup analyses stratified by sex and race in women, but not in men, and in blacks, but not in whites. The relationship between HDL-C and lumbar BMD in men and whites was a U-shaped curve with the same inflection point: 0.98 mmol/L. CONCLUSIONS In people aged 20 to 59, our research discovered a positive relationship among HDL-C and lumbar BMD. Among males and whites, this relationship followed a U-shaped curve (inflection point: 0.98 mmol/L). HDL-C measurement might be used as a responsive biomarker for detecting osteoporosis early and guiding therapy.
Collapse
Affiliation(s)
- Ruijie Xie
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Xiongjie Huang
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Qianlong Liu
- Department of Hand Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Mingjiang Liu
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China.
| |
Collapse
|
2
|
Abstract
Coronary artery disease (CAD) has emerged as a major cause of morbidity and mortality worldwide. Recent findings on the role of genetic factors in the aetiopathology of CAD have implicated novel genes and variants in addition to those involved in lipid and lipoprotein metabolism. However, our present knowledge is limited due to lack of clarity on their exact identity and the quantum of impact on disease susceptibility, and incident risk. It is a matter of great interest to understand the role of genetic factors in ethnic populations that have a strong underlying predisposition to CAD such as the South Asian populations, particularly among Asian Indians living in India and abroad. Although, a number of isolated studies do implicate certain gene polymorphisms towards enhanced disease susceptibility, the available data remains scanty and inconclusive as they have not been validated in large, prospective cohorts. The present review aims to consolidate the available literature on the genetics of CAD in Asian Indians and seeks to provide insights on the concerns that need to be addressed in future studies to generate information having clinical value.
Collapse
|
3
|
Pac-Kożuchowska E, Krawiec P. Cholesterol ester transfer protein (CETP) gene polymorphism and selected parameters of lipid metabolism in children from families with history of cardiovascular system diseases. Med Sci Monit 2013; 19:818-25. [PMID: 24091356 PMCID: PMC3795015 DOI: 10.12659/msm.889550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Children from families with a history of cardiovascular system diseases are especially predisposed to early development of atherosclerosis. Therefore, the aim of this study was to examine the selected lipid parameters and polymorphisms of G279A located in the cholesterol ester transfer protein (CETP) gene. MATERIAL/METHODS This longitudinal study was performed in 3 stages. During stage I the tests were carried out on 137 newborns after birth. Of these, we selected 30 children with a family history of cardiovascular system diseases. During stage II of the study the same children were evaluated at the age of 18-30 months, and during stage III at the age 5-6 years. Gestational age and the birth weight were evaluated in newborns. The older children were examined physically, and nutritional status was assessed. In all of the children examined, we determined the blood concentrations of triglycerides, total cholesterol, high-density lipoprotein (HDL) cholesterol, apolipoproteins (AI and B), lipoprotein(a) and polymorphisms, and the G279A locus of the CETP gene. RESULTS In children with genotype B1B1 (after birth and aged 5-6 years), a significantly lower cholesterol concentration in the HDL fraction was found compared to those with genotype B1B2 and B2B2. Other biochemical parameters of lipid metabolism were not significantly different between these genetic polymorphisms. CONCLUSIONS A lower cholesterol concentration in the HDL fraction in children with a family history of cardiovascular system diseases was determined by polymorphism of the CETP gene. Homozygotes (genotype B1B1) show a tendency towards the phenotype favoring the development of atherosclerosis.
Collapse
|
4
|
Abstract
High-density lipoprotein (HDL) cholesterol levels bear an inverse relationship to cardiovascular risk. To date, however, no intervention specifically targeting HDL has been demonstrated to reduce cardiovascular risk. Cholesterol ester transfer protein (CETP) mediates transfer of cholesterol ester from HDL to apolipoprotein B-containing particles. Most, but not all observational cohort studies indicate that genetic polymorphisms of CETP associated with reduced activity and higher HDL cholesterol levels are also associated with reduced cardiovascular risk. Some, but not all studies indicate that CETP inhibition in rabbits retards atherosclerosis, whereas transgenic CETP expression in mice promotes atherosclerosis. Torcetrapib, the first CETP inhibitor to reach phase III clinical development, was abandoned due to excess mortality associated with increases in aldosterone and blood pressure. Two other CETP inhibitors have entered phase III clinical development. Anacetrapib is a potent inhibitor of CETP that produces very large increases in HDL cholesterol and large reductions in low-density lipoprotein (LDL) cholesterol, beyond those achieved with statins. Dalcetrapib is a less potent CETP inhibitor that produces smaller increases in HDL cholesterol with minimal effect on LDL cholesterol. Both agents appear to allow efflux of cholesterol from macrophages to HDL in vitro, and neither agent affects blood pressure or aldosterone in vivo. Two large cardiovascular outcomes trials, one with anacetrapib and one with dalcetrapib, should provide a conclusive test of the hypothesis that inhibition of CETP decreases cardiovascular risk.
Collapse
|
5
|
Ackert-Bicknell CL. HDL cholesterol and bone mineral density: is there a genetic link? Bone 2012; 50:525-33. [PMID: 21810493 PMCID: PMC3236254 DOI: 10.1016/j.bone.2011.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/27/2011] [Accepted: 07/04/2011] [Indexed: 12/16/2022]
Abstract
Overwhelming evidence has linked cardiovascular disease and osteoporosis, but the shared root cause of these two diseases of the elderly remains unknown. Low levels of high density lipoprotein cholesterol (HDL) and bone mineral density (BMD) are risk factors for cardiovascular disease and osteoporosis respectively. A number of correlation studies have attempted to determine if there is a relationship between serum HDL and BMD but these studies are confounded by a number of variables including age, diet, genetic background, gender and hormonal status. Collectively, these data suggest that there is a relationship between these two phenotypes, but that the nature of this relationship is context specific. Studies in mice plainly demonstrate that genetic loci for BMD and HDL co-map and transgenic mouse models have been used to show that a single gene can affect both serum HDL and BMD. Work completed to date has demonstrated that HDL can interact directly with both osteoblasts and osteoclasts, but no direct evidence links bone back to the regulation of HDL levels. Understanding the genetic relationship between BMD and HDL has huge implications for understanding the clinical relationship between CVD and osteoporosis and for the development of safe treatment options for both diseases.
Collapse
|
6
|
Hagberg JM. Do genetic variations alter the effects of exercise training on cardiovascular disease and can we identify the candidate variants now or in the future? J Appl Physiol (1985) 2011; 111:916-28. [DOI: 10.1152/japplphysiol.00153.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease (CVD) and CVD risk factors are highly heritable, and numerous lines of evidence indicate they have a strong genetic basis. While there is nothing known about the interactive effects of genetics and exercise training on CVD itself, there is at least some literature addressing their interactive effect on CVD risk factors. There is some evidence indicating that CVD risk factor responses to exercise training are also heritable and, thus, may have a genetic basis. While roughly 100 studies have reported significant effects of genetic variants on CVD risk factor responses to exercise training, no definitive conclusions can be generated at the present time, because of the lack of consistent and replicated results and the small sample sizes evident in most studies. There is some evidence supporting “possible” candidate genes that may affect these responses to exercise training: APO E and CETP for plasma lipoprotein-lipid profiles; eNOS, ACE, EDN1, and GNB3 for blood pressure; PPARG for type 2 diabetes phenotypes; and FTO and BAR genes for obesity-related phenotypes. However, while genotyping technologies and statistical methods are advancing rapidly, the primary limitation in this field is the need to generate what in terms of exercise intervention studies would be almost incomprehensible sample sizes. Most recent diabetes, obesity, and blood pressure genetic studies have utilized populations of 10,000–250,000 subjects, which result in the necessary statistical power to detect the magnitude of effects that would probably be expected for the impact of an individual gene on CVD risk factor responses to exercise training. Thus at this time it is difficult to see how this field will advance in the future to the point where robust, consistent, and replicated data are available to address these issues. However, the results of recent large-scale genomewide association studies for baseline CVD risk factors may drive future hypothesis-driven exercise training intervention studies in smaller populations addressing the impact of specific genetic variants on well-defined physiological phenotypes.
Collapse
Affiliation(s)
- James M. Hagberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
7
|
Aerobic exercise improves reverse cholesterol transport in cholesteryl ester transfer protein transgenic mice. Lipids 2011; 46:617-25. [PMID: 21479674 DOI: 10.1007/s11745-011-3555-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/14/2011] [Indexed: 12/15/2022]
Abstract
We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of ¹⁴C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [³H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [³H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [³H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.
Collapse
|
8
|
Bhanushali AA, Das BR. Genetic variants at the APOE, lipoprotein lipase (LpL), cholesteryl ester transfer protein (CETP), and endothelial nitric oxide (eNOS) genes and coronary artery disease (CAD): CETP Taq1 B2B2 associates with lower risk of CAD in Asian Indians. J Community Genet 2010; 1:55-62. [PMID: 22460205 DOI: 10.1007/s12687-010-0005-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/23/2010] [Indexed: 11/30/2022] Open
Abstract
Coronary artery disease (CAD) arises due to a complex interplay between the environment and genetic factors. Alterations in many of the biomarkers such as lipids and lipoprotein levels are characteristic of CAD. The phenotypes themselves have genetic determinants, and many single-nucleotide polymorphisms (SNPs) have been identified which influence them. The current study aims to evaluate the effect of six common polymorphisms at four loci, lipoprotein lipase (D9N, N291S, S447X), apolipoprotein E (APOE), cholesteryl ester transfer protein (C277T), and endothelial nitric oxide synthase (E298D), on lipid and lipoprotein levels and its association with CAD. Genotyping for the SNPs was done in 240 Indians of which 90 had proven CAD. The other 150 were clinically free from CAD and acted as controls. Relation of genetic variants, clinical history, and biochemical parameters with CAD were analyzed by multiple regression analysis. The frequency of the B2 allele in the CETP gene was significantly lower in cases than in controls (0.40 vs 0.49, P = 0.042). Significant association of CETP Taq1B SNP was seen with total cholesterol and low density lipoprotein cholesterol. Multivariate analysis accounting for clinical and metabolic predictors of CAD showed smoking to be a significant risk factor (odds ratio (OR) 4.347, 95% confidence interval (CI) 1.888-10.012, P = 0.001) and the CETP B2 variant imparting atheroprotection (OR 0.312, 95% CI 0.116-0.841, P = 0.021) possibly through a favorable lipid profile. None of the other SNPs were associated with the risk of CAD.
Collapse
Affiliation(s)
- Aparna Amarendra Bhanushali
- Research and Development, Super Religare Laboratories Ltd, Prime Square Building, SV Road, Goregaon (West), Mumbai, 400062, India,
| | | |
Collapse
|
9
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Rankinen T, Bray MS, Hagberg JM, Pérusse L, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc 2007; 38:1863-88. [PMID: 17095919 DOI: 10.1249/01.mss.0000233789.01164.4f] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current review presents the 2005 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2005. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in sedentary or active people, in adaptation to acute exercise, or for training-induced changes are positioned on the genetic map of all autosomes and the X chromosome. Negative studies are reviewed, but a gene or locus must be supported by at least one positive study before being inserted on the map. By the end of 2000, in the early version of the gene map, 29 loci were depicted. In contrast, the 2005 human gene map for physical performance and health-related phenotypes includes 165 autosomal gene entries and QTL, plus five others on the X chromosome. Moreover, there are 17 mitochondrial genes in which sequence variants have been shown to influence relevant fitness and performance phenotypes. Thus, the map is growing in complexity. Unfortunately, progress is slow in the field of genetics of fitness and performance, primarily because the number of laboratories and scientists focused on the role of genes and sequence variations in exercise-related traits continues to be quite limited.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|