1
|
Załuska-Ogryzek K, Marzęda P, Wróblewska-Łuczka P, Florek-Łuszczki M, Plewa Z, Bojar H, Zolkowska D, Łuszczki JJ. Interactions among Lacosamide and Second-Generation Antiepileptic Drugs in the Tonic-Clonic Seizure Model in Mice. Int J Mol Sci 2021; 22:ijms22115537. [PMID: 34073930 PMCID: PMC8197343 DOI: 10.3390/ijms22115537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Combination therapy with two or three antiseizure medications (ASMs) is sometimes a preferred method of treatment in epilepsy patients. (1) Background: To detect the most beneficial combination among three ASMs, a screen test evaluating in vivo interactions with respect to their anticonvulsant properties, was conducted on albino Swiss mice; (2) Methods: Classification of interactions among lacosamide (LCM) and selected second-generation ASMs (lamotrigine (LTG), pregabalin (PGB), oxcarbazepine (OXC), and topiramate (TPM)) was based on the isobolographic analysis in the mouse maximal electroshock-induced seizure (MES) model. Interactions among LCM and second-generation ASMs were visualized using a polygonogram; (3) Results: In the mouse MES model, synergy was observed for the combinations of LCM + TPM + PGB and LCM + OXC + PGB. Additivity was reported for the other combinations tested i.e., LCM + LTG + TPM, LCM + LTG + PGB, LCM + LTG + OXC, and LCM + OXC + TPM in this seizure model. No adverse effects associated with triple ASM combinations, containing LCM and second-generation ASMs were observed in mice; (4) Conclusions: The combination of LCM + TPM + PGB was the most beneficial combination among the tested in this study, offering synergistic suppression of tonic-clonic seizures in mice subjected to the MES model. Both the isobolographic analysis and polygonogram method can be recommended for experimental epileptology when classifying interactions among the ASMs.
Collapse
Affiliation(s)
- Katarzyna Załuska-Ogryzek
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (K.Z.-O.); (P.M.); (P.W.-Ł.)
| | - Paweł Marzęda
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (K.Z.-O.); (P.M.); (P.W.-Ł.)
| | - Paula Wróblewska-Łuczka
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (K.Z.-O.); (P.M.); (P.W.-Ł.)
| | | | - Zbigniew Plewa
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital, 20-048 Lublin, Poland;
| | - Hubert Bojar
- Department of Toxicology and Food Safety, Institute of Rural Health, 20-090 Lublin, Poland;
| | - Dorota Zolkowska
- Department of Neurology, UC Davis School of Medicine, Sacramento, CA 95816, USA;
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (K.Z.-O.); (P.M.); (P.W.-Ł.)
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland
- Correspondence: ; Tel.: +48-81-448-65-03
| |
Collapse
|
2
|
Development and validation of an LC-MS/MS method for the quantification of flavonoid glucuronides (wogonoside, baicalin, and apigenin-glucuronide) in the bile and blood samples: Application to a portal vein infusion study. Anal Biochem 2020; 601:113723. [PMID: 32298642 DOI: 10.1016/j.ab.2020.113723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/19/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Glucuronidation is one of the major metabolic pathways for flavonoids. However, quantification of flavonoid glucuronides in biological samples, especially in the bile, is sometimes challenging due to signal suppression by bile acids. The purpose of this study is to establish a robust LC-MS/MS method for directly measuring flavonoid glucuronides in bile and blood. Wogonoside (wogonin-7-O-glucuronide), baicalin (baicalein-7-O-glucuronide) and apigenin-7-O-glucuronide were used as the model compounds and taurocholic acid (T-CA) were used as the model bile acid to establish the method. Bile samples were processed using solid phase extraction (SPE) and blood samples were prepared using protein precipitation method. The analytes were separated on a Resteck HPLC (50 mm × 2.1 mm ID, 1.7 μm) column using acetonitrile and 0.1% formic acid in water as the mobile phases. The mass analysis was performed in an AB Sciex 5500 Qtrap mass spectrometer via multiple reaction monitoring (MRM) in the positive mode. The results showed that the linear range of the above three analytes were 10 nM-5000 nM in the bile and 1.56 nM-4000 nM in the blood, respectively. The recoveries of three glucuronides were >85% and the matrix effects were <20% at low, medium and high concentrations in the bile and the blood. The results also showed that >90% of these bile acids were removed by the selected SPE procedure to facilitate glucuronide analysis. The validated method was successfully applied to a portal vein infusion study using rats to quantify baicalin, wogonoside, and apigenin-glucuronide in bile and blood samples.
Collapse
|
3
|
Luszczki JJ, Panasiuk A, Zagaja M, Karwan S, Bojar H, Plewa Z, Florek-Łuszczki M. Polygonogram and isobolographic analysis of interactions between various novel antiepileptic drugs in the 6-Hz corneal stimulation-induced seizure model in mice. PLoS One 2020; 15:e0234070. [PMID: 32479532 PMCID: PMC7263629 DOI: 10.1371/journal.pone.0234070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Pharmacotherapy with two antiepileptic drugs in combination is usually prescribed to epilepsy patients with refractory seizures. The choice of antiepileptic drugs in combination should be based on synergistic cooperation of the drugs with respect to suppression of seizures. The selection of synergistic interactions between antiepileptic drugs is challenging issue for physicians, especially, if 25 antiepileptic drugs are currently available and approved to treat epilepsy patients. The aim of this study was to determine all possible interactions among 5 second-generation antiepileptic drugs (gabapentin (GBP), lacosamide (LCM), levetiracetam (LEV), pregabalin (PGB) and retigabine (RTG)) in the 6-Hz corneal stimulation-induced seizure model in adult male albino Swiss mice. The anticonvulsant effects of 10 various two-drug combinations of antiepileptic drugs were evaluated with type I isobolographic analysis associated with graphical presentation of polygonogram to visualize the types of interactions. Isobolographic analysis revealed that 7 two-drug combinations of LEV+RTG, LEV+LCM, GBP+RTG, PGB+LEV, GBP+LEV, PGB+RTG, PGB+LCM were synergistic in the 6-Hz corneal stimulation-induced seizure model in mice. The additive interaction was observed for the combinations of GBP+LCM, GBP+PGB, and RTG+LCM in this seizure model in mice. The most beneficial combination, offering the highest level of synergistic suppression of seizures in mice was that of LEV+RTG, whereas the most additive combination that protected the animals from seizures was that reporting additivity for RTG+LCM. The strength of interaction for two-drug combinations can be arranged from the synergistic to the additive, as follows: LEV+RTG > LEV+LCM > GBP+RTG > PGB+LEV > GBP+LEV > PGB+RTG > PGB+LCM > GBP+LCM > GBP+PGB > RTG+LCM.
Collapse
Affiliation(s)
- Jarogniew J. Luszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Anna Panasiuk
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | | | - Hubert Bojar
- Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital, Lublin, Poland
| | | |
Collapse
|
4
|
Yuen ES, Trocóniz IF. Can pentylenetetrazole and maximal electroshock rodent seizure models quantitatively predict antiepileptic efficacy in humans? Seizure 2015; 24:21-7. [DOI: 10.1016/j.seizure.2014.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022] Open
|
5
|
Matsumura N, Nakaki T. Isobolographic analysis of the mechanisms of action of anticonvulsants from a combination effect. Eur J Pharmacol 2014; 741:237-46. [PMID: 25149665 DOI: 10.1016/j.ejphar.2014.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/29/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
The nature of the pharmacodynamic interactions of drugs is influenced by the drugs׳ mechanisms of action. It has been hypothesized that drugs with different mechanisms are likely to interact synergistically, whereas those with similar mechanisms seem to produce additive interactions. In this review, we describe an extensive investigation of the published literature on drug combinations of anticonvulsants, the nature of the interaction of which has been evaluated by type I and II isobolographic analyses and the subthreshold method. The molecular targets of antiepileptic drugs (AEDs) include Na(+) and Ca(2+) channels, GABA type-A receptor, and glutamate receptors such as NMDA and AMPA/kainate receptors. The results of this review indicate that the nature of interactions evaluated by type I isobolographic analyses but not by the two other methods seems to be consistent with the above hypothesis. Type I isobolographic analyses may be used not only for evaluating drug combinations but also for predicting the targets of new drugs.
Collapse
Affiliation(s)
- Nobuko Matsumura
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
6
|
Vyawahare NS, Bodhankar SL. Anticonvulsant Activity of Argyreia speciosa in Mice. Indian J Pharm Sci 2011; 71:131-4. [PMID: 20336209 PMCID: PMC2839397 DOI: 10.4103/0250-474x.54277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 12/30/2008] [Accepted: 03/24/2009] [Indexed: 11/06/2022] Open
Abstract
Argyreia speciosa commonly known as Vridha daraka in Sanskrit is one of the important plants used in indigenous system of medicine. The root is regarded as an alternative tonic and useful in the diseases of nervous system. To confirm the veracity of aforementioned claim, we have evaluated the anticonvulsant effect of the extract. In this investigation, the mice were pretreated with different doses of Argyreia speciosa extract (100, 200, 400 mg/kg) for 10 days and then, they were subjected to either pentylenetetrazole (80 mg/kg) or maximal electroshock seizures (50 mA, 0.2 s) treatment. The hydroalcoholic extract of Argyreia speciosa at the dose of 200 and 400 mg/kg significantly delayed the latency to the onset of first clonus as well as onset of death in unprotected mice and exhibited protection in 16.66% and 33.33% of pentylenetetrazole treated mice respectively. Whereas in case of maximal electroshock-seizures, the dose of 200 and 400 mg/kg significantly reduced the duration of hind limb extension and both the doses were statistically found to be equipotent. The reference standards, clonazepam (0.1 mg/kg) and phenytoin (20 mg/kg) provided complete protection. Thus, present study revealed anticonvulsant effect of Argyreia speciosa against pentylenetetrazole- and maximal electroshock-induced convulsions in mice.
Collapse
Affiliation(s)
- N S Vyawahare
- AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune-411 001, India
| | | |
Collapse
|
7
|
Luszczki JJ, Czuczwar SJ. Isobolographic characterization of interactions between vigabatrin and tiagabine in two experimental models of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:529-38. [PMID: 17204358 DOI: 10.1016/j.pnpbp.2006.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/16/2006] [Indexed: 11/15/2022]
Abstract
To characterize the type of interactions between vigabatrin (VGB) and tiagabine (TGB) -- two newer antiepileptic drugs influencing GABA-ergic neurotransmitter system, the isobolographic analysis was used in two experimental models of epilepsy: the maximal electroshock seizure threshold (MEST) test and pentylenetetrazole (PTZ)-induced seizures in mice. Results indicated that VGB and TGB administered separately (i.p.) increased the electroconvulsive threshold in mice, which allowed the calculation of their TID(20) values (threshold increasing doses by 20% over the threshold of control animals) in the MEST test. The TID(20) for VGB was 226.2 mg/kg and that for TGB was 4.4 mg/kg. With isobolography, the combinations of VGB with TGB (at fixed-ratios of 1:3, 1:1 and 3:1) exerted additive interactions in the MEST test in mice. Similarly, VGB and TGB injected separately (i.p.) suppressed the PTZ-induced seizures, and their ED(50) values (median effective doses, protecting 50% of the animals tested against clonic convulsions) for VGB and TGB were 622.5 mg/kg and 0.8 mg/kg, respectively. Isobolographic analysis of interactions revealed that the combinations of VGB with TGB at the fixed-ratios of 1:3 and 1:1 produced supra-additive (synergistic) interactions against PTZ-induced seizures. Only the combination of VGB with TGB at the fixed-ratio of 3:1 was additive in the PTZ test. The evaluation of acute adverse-effect potential for all fixed-ratio combinations of VGB with TGB (administered at their TID(20) and ED(50) values from the MEST and PTZ tests) revealed that none of the examined combinations affected motor coordination in the chimney test and altered neuromuscular tone in the grip-strength test in mice. In contrast, VGB in combinations with TGB produced the antinociceptive effects with respect to suppression of acute thermal pain in animals subjected to the hot-plate test. Based on this preclinical study, one can ascertain that the combination of VGB with TGB would provide an adequate seizure control in epileptic patients.
Collapse
Affiliation(s)
- Jarogniew J Luszczki
- Department of Pathophysiology, Medical University, Jaczewskiego 8, PL 20-090 Lublin, Poland.
| | | |
Collapse
|
8
|
Luszczki JJ. Isobolographic analysis of interaction between drugs with nonparallel dose-response relationship curves: a practical application. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:105-14. [PMID: 17333129 DOI: 10.1007/s00210-007-0144-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 02/15/2007] [Indexed: 11/24/2022]
Abstract
The objective of this study was to characterize the anticonvulsant and acute adverse-effect potentials of topiramate (TPM) and gabapentin (GBP)-two second-generation antiepileptic drugs administered alone and in combination in the maximal electroshock (MES)-induced seizures and chimney test in mice. The anticonvulsant and acute adverse effects of the combination of TPM with GBP at the fixed ratio of 1:1 were determined using the type I isobolographic analysis for nonparallel dose-response relationship curves (DRRCs). To ascertain any pharmacokinetic contribution to the observed interaction between TPM and GBP, total brain concentrations of both drugs were determined. The isobolographic analysis of interaction for TPM and GBP, whose DRRCs were not parallel in both MES and chimney tests, was accompanied with a presentation of all required calculations allowing the determination of lower and upper lines of additivity. The isobolographic analysis revealed that TPM combined with GBP at the fixed-ratio combination of 1:1 interacted supraadditively (synergistically) in terms of suppression of MES-induced seizures, and simultaneously, the combination produced additive interaction with respect to motor coordination impairment (adverse effects) in the chimney test. The evaluation of pharmacokinetic characteristics of interaction for the combination of TPM with GBP revealed that neither TPM nor GBP affected their total brain concentrations in experimental animals, and thus, the observed interaction in the MES test was pharmacodynamic in nature. In conclusion, the combination of TPM with GBP, because of supraadditivity in the MES test and additivity in terms of motor coordination impairment in the chimney test as well as lack of pharmacokinetic interactions between drugs, fulfilled the criterion of a favorable combination, worthy of recommendation in further clinical practice.
Collapse
Affiliation(s)
- Jarogniew J Luszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| |
Collapse
|
9
|
Luszczki JJ, Andres-Mach MM, Ratnaraj N, Patsalos PN, Czuczwar SJ. Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia 2007; 48:806-15. [PMID: 17284299 DOI: 10.1111/j.1528-1167.2006.00964.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Polytherapy with two or more antiepileptic drugs (AEDs) is generally required for approximately 30% of patients with epilepsy, who do not respond satisfactorily to monotherapy. The potential usefulness of AED combinations, producing synergistic anticonvulsant efficacy and minimal adverse effects, is therefore of significant importance. The present study sought to ascertain the potential usefulness of levetiracetam (LEV) and felbamate (FBM) in combination in the mouse maximal electroshock (MES)-induced seizure model. METHODS The anticonvulsant interaction profile between LEV and FBM in the mouse MES-induced seizure model was determined using type II isobolographic analysis. Acute adverse effects (motor performance) were ascertained by use of the chimney test. LEV and FBM brain concentrations were measured by HPLC in order to determine any pharmacokinetic contribution to the observed antiseizure effect. RESULTS LEV in combination with FBM, at the fixed ratios of 1:2, 1:1, 2:1, and 4:1, were supraadditive, whereas at the fixed ratio of 1:4, additivity was observed in the mouse MES model. Furthermore, none of the investigated combinations altered motor performance in the chimney test. Brain FBM concentrations were unaffected by concomitant LEV administration. In contrast, FBM significantly increased LEV brain concentrations. CONCLUSIONS LEV in combination with FBM was associated with pharmacodynamic supraadditivity in the MES test. However, this anticonvulsant supraadditivity was associated with a concurrent increase in brain LEV concentrations indicating a pharmacokinetic contribution to the observed pharmacodynamic interaction between LEV and FBM.
Collapse
Affiliation(s)
- Jarogniew J Luszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego, Lublin, Poland
| | | | | | | | | |
Collapse
|
10
|
Borowicz KK, Kimber-Trojnar Z, Ratnaraj N, Patsalos PN, Luszczki JJ, Czuczwar SJ. Isobolographic analysis of interactions between losigamone and conventional antiepileptic drugs in the mouse maximal electroshock model. Eur Neuropsychopharmacol 2007; 17:94-101. [PMID: 16600575 DOI: 10.1016/j.euroneuro.2006.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 11/30/2022]
Abstract
The aim of this study was the isobolographic evaluation of interactions between losigamone (LSG), valproate (VPA), carbamazepine (CBZ), phenytoin (PHT), and phenobarbital (PB) in the maximal electroshock (MES) test in mice. Electroconvulsions were produced by means of an alternating current (ear-clip electrodes, 0.2-s stimulus duration, and tonic hindlimb extension taken as the endpoint). Adverse effects were evaluated in the chimney test (motor coordination) and the passive avoidance task (long-term memory). Brain concentrations of antiepileptic drugs (AEDs) were measured by immunofluorescence or high-performance liquid chromatography. Isobolographic analysis indicated synergistic interactions between LSG and VPA. For example, in the proportion of 1:1 the theoretically calculated 50% effective dose for additivity (ED(50add)) was 138 mg/kg, while the experimentally derived ED(50) for the mixture (ED(50mix)) was 85.2 mg/kg. The difference was significant at p<0.001. LSG combined with CBZ or PHT showed additivity, whereas the combinations of LSG with PB were either additive, for the fixed ratios of 1:3 and 1:1, or antagonistic for the ratio of 3:1 (ED(50add)=18.4 mg/kg versus ED(50mix)=26.7 mg/kg, p<0.05). Impairment of long-term memory was noted only in the case of VPA given at its ED(50), however this AED did not affect motor performance. LSG, CBZ, PHT and PB (applied at their ED(50) values) and co-administration of LSG with conventional AEDs (including VPA) impaired neither motor performance nor long-term memory. LSG did not affect the brain concentration of VPA or PB, but significantly elevated the brain concentrations of CBZ and PHT. In contrast, VPA, CBZ and PHT significantly increased the brain concentration of LSG, indicating a pharmacokinetic contribution to the observed pharmacodynamic interactions. Although LSG exhibited some favorable pharmacodynamic interactions with various AEDs, these were complicated by pharmacokinetic interactions and emphasize the importance of measuring AED concentrations in studies designed to identify desirable AED combinations.
Collapse
Affiliation(s)
- Kinga K Borowicz
- Department of Pathophysiology, Lublin Medical University, Jaczewskiego 8, 20-090 Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ. Characterization of the Anticonvulsant, Behavioral and Pharmacokinetic Interaction Profiles of Stiripentol in Combination with Clonazepam, Ethosuximide, Phenobarbital, and Valproate Using Isobolographic Analysis. Epilepsia 2006; 47:1841-54. [PMID: 17116023 DOI: 10.1111/j.1528-1167.2006.00825.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Isobolographic analysis was used to characterize the interactions between stiripentol (STP) and clonazepam (CZP), ethosuximide (ETS), phenobarbital (PB), and valproate (VPA) in suppressing pentylenetetrazole (PTZ)-induced clonic seizures in mice. METHODS The anticonvulsant and acute adverse (neurotoxic) effects of STP in combination with the various conventional antiepileptic drugs (AEDs), at fixed ratios of 1:3, 1:1, and 3:1, were evaluated in the PTZ and chimney tests in mice using the isobolographic analysis. Additionally, protective indices (PI) and benefit indices (BI) were calculated to identify their pharmacological profiles so that a ranking in relation to advantageous combination could be established. Moreover, adverse-effect paradigms were determined by use of the step-through passive avoidance task (long-term memory), threshold for the first pain reaction, grip-strength test (neuromuscular tone), and the hot plate test (acute thermal pain). Brain AED concentrations were also measured so as to ascertain any pharmacokinetic contribution to the pharmacodynamic interactions. RESULTS All AED combinations comprising of STP and CZP, ETS, PB, and VPA (at the fixed ratios of 1:3, 1:1 and 3:1) were additive in terms of clonic seizure suppression in the PTZ test. However, these interactions were complicated by changes in brain AED concentrations consequent to pharmacokinetic interactions. Thus STP significantly increased total brain ETS and PB concentrations, and decreased VPA concentrations, but was without effect on CZP concentrations. In contrast, PB significantly decreased and VPA increased total brain STP concentrations while CZP and ETS were without effect. Furthermore, while isobolographic analysis revealed that STP and CZP in combination, at the fixed ratios of 1:1 and 3:1, were supraadditive (synergistic; p < 0.05), the combinations of STP with CZP (1:3), ETS, PB, or VPA (at all fixed ratios of 1:3, 1:1, and 3:1) were barely additivity in terms of acute neurotoxic adverse effects in the chimney test. Additionally, none of the examined combinations of STP with conventional AEDs (CZP, ETS, PB, VPA--at their median effective doses from the PTZ-test) affected long-term memory, threshold for the first pain reaction, neuromuscular tone, and acute thermal pain. CONCLUSIONS Based on BI values, the combination of STP with PB at the fixed ratio of 1:3 appears to be a particularly favourable combination. In contrast, STP and CZP or ETS (at the fixed ratios of 1:1 and 3:1) were unfavorable combinations. However, these conclusions are confounded by the fact that STP is associated with significant pharmacokinetic interactions. The remaining combinations of STP with PB (1:1 and 3:1), CZP (1:3), ETS (1:3), and VPA (at all fixed ratios of 1:3, 1:1, and 3:1) do not appear to be potential favorable AED combinations.
Collapse
|
12
|
Vartanian MG, Radulovic LL, Kinsora JJ, Serpa KA, Vergnes M, Bertram E, Taylor CP. Activity profile of pregabalin in rodent models of epilepsy and ataxia. Epilepsy Res 2006; 68:189-205. [PMID: 16337109 DOI: 10.1016/j.eplepsyres.2005.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/27/2005] [Accepted: 11/01/2005] [Indexed: 11/15/2022]
Abstract
Pregabalin (Lyrica) is a novel amino acid compound that binds with high affinity to the alpha2-delta (alpha2-delta) auxiliary protein of voltage-gated calcium channels. In vivo, it potently prevents seizures, pain-related behaviors and has anxiolytic-like activity in rodent models. The present studies were performed to determine the profile of pregabalin anticonvulsant activity in a variety of mouse and rat models. In the high-intensity electroshock test, pregabalin potently inhibited tonic extensor seizures in rats (ED50 = 1.8 mg/kg, PO), and low-intensity electroshock seizures in mice. It prevented tonic extensor seizures in the DBA/2 audiogenic mouse model (ED50 = 2.7 mg/kg, PO). Its time course of action against electroshock induced seizures in rats roughly followed the pharmacokinetics of radiolabeled drug in the brain compartment. At higher dosages (ED50 1= 31 mg/kg, PO), pregabalin prevented clonic seizures from pentylenetetrazole in mice. In a kindled rat model of partial seizures, pregabalin prevented stages 4-5 behavioral seizures (lowest effective dose = 10 mg/kg, IP), and also reduced the duration of electrographic seizures. Pregabalin was not active to prevent spontaneous absence-like seizures in the Genetic Absence Epilepsy in Rats from Strasbourg (GAERS) inbred Wistar rat strain. Pregabalin caused ataxia and decreased spontaneous locomotor activity at dosages 10-30-fold higher than those active to prevent seizures. These findings suggest that pregabalin has an anticonvulsant mechanism different from the prototype antiepileptic drugs and similar to that of gabapentin except with increased potency and bioavailability. In summary, our results show that pregabalin has several properties that favor treatment of partial seizures in humans.
Collapse
Affiliation(s)
- Mark G Vartanian
- Department of CNS Biology, Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Luszczki JJ, Czuczwar M, Gawlik P, Sawiniec-Pozniak G, Czuczwar K, Czuczwar SJ. 7-Nitroindazole potentiates the anticonvulsant action of some second-generation antiepileptic drugs in the mouse maximal electroshock-induced seizure model. J Neural Transm (Vienna) 2006; 113:1157-68. [PMID: 16465466 DOI: 10.1007/s00702-005-0417-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/01/2005] [Indexed: 11/27/2022]
Abstract
The effects of 7-nitroindazole (7NI, a preferential neuronal nitric oxide synthase inhibitor) on the anticonvulsant activity of four second-generation antiepileptic drugs (AEDs: felbamate [FBM], lamotrigine [LTG], oxcarbazepine [OXC] and topiramate [TPM]) were studied in the mouse maximal electroshock-induced seizure (MES) model. Moreover, the influence of 7NI on the acute neurotoxic (adverse-effect) profiles of the studied AEDs, with regard to motor coordination, was determined in the chimney test in mice. Results indicate that 7NI (50 mg/kg; i.p.) significantly potentiated the anticonvulsant activity of OXC, but not that of FBM, LTG and TPM against MES-induced seizures and, simultaneously, it enhanced the acute neurotoxic effects of TPM, but not those of FBM, LTG and OXC in the chimney test in mice. 7NI at the lower dose of 25 mg/kg had no effect on the antiseizure activity and acute neurotoxic profiles of all investigated AEDs. Pharmacokinetic evaluation of interactions between 7NI and LTG, OXC and TPM against MES-induced seizures revealed no significant changes in free (non-protein bound) plasma AED concentrations following 7NI administration. Moreover, none of the examined combinations of 7NI with AEDs from the MES test were associated with long-term memory impairment in mice subjected to the step-through passive avoidance task. Based on our preclinical study, it can be concluded that only the combination of 7NI with OXC was beneficial, when considering its both anticonvulsant and acute neurotoxic effects. Moreover, the lack of impairment of long-term memory and no pharmacokinetic interactions in plasma of experimental animals make the combination of 7NI with OXC worthy of consideration for the treatment of patients with refractory epilepsy. The other combinations tested between 7NI and LTG, FBM and TPM were neutral, when considering their both anticonvulsant effects and acute neurotoxic profiles, therefore, no useful recommendation can be made for their clinical application.
Collapse
Affiliation(s)
- J J Luszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Luszczki JJ, Andres MM, Czuczwar P, Cioczek-Czuczwar A, Ratnaraj N, Patsalos PN, Czuczwar SJ. Pharmacodynamic and Pharmacokinetic Characterization of Interactions between Levetiracetam and Numerous Antiepileptic Drugs in the Mouse Maximal Electroshock Seizure Model: An Isobolographic Analysis. Epilepsia 2006; 47:10-20. [PMID: 16417526 DOI: 10.1111/j.1528-1167.2006.00364.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Approximately 30% of patients with epilepsy do not experience satisfactory seizure control with antiepileptic drug (AED) monotherapy and often require polytherapy. The potential usefulness of AED combinations, in terms of efficacy and adverse effects, is therefore of major importance. The present study sought to identify potentially useful AED combinations with levetiracetam (LEV) METHODS: With isobolographic analysis, the mouse maximal electroshock (MES)-induced seizure model was investigated with regard to the anticonvulsant effects of carbamazepine (CBZ), phenytoin, phenobarbital (PB), valproate, lamotrigine, topiramate (TPM), and oxcarbazepine (OXC), administered singly and in combination with LEV. Acute adverse effects were ascertained by use of the chimney test evaluating motor performance and the step-through passive-avoidance task assessing long-term memory. Brain AED concentrations were determined to ascertain any pharmacokinetic contribution to the observed antiseizure effect. RESULTS LEV in combination with TPM, at the fixed ratios of 1:2, 1:1, 2:1, and 4:1, was supraadditive (synergistic) in the MES test. Likewise, the combination of LEV with CBZ (at the fixed ratio of 16:1) and LEV with OXC (8:1 and 16:1) were supraadditive. In contrast, all other LEV/AED combinations displayed additivity. Furthermore, none of the investigated LEV/AED combinations altered motor performance and long-term memory. LEV brain concentrations were unaffected by concomitant AED administration, and LEV had no significant effect on brain concentrations of concomitant AEDs. CONCLUSIONS These preclinical data would suggest that LEV in combination with TPM is associated with beneficial anticonvulsant pharmacodynamic interactions. Similar, but less profound effects were seen with OXC and CBZ.
Collapse
|
15
|
Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ. Pharmacodynamic and/or pharmacokinetic characteristics of interactions between loreclezole and four conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Epilepsy Behav 2005; 7:639-51. [PMID: 16140589 DOI: 10.1016/j.yebeh.2005.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 11/20/2022]
Abstract
Isobolographic analysis was used to characterize the interactions between loreclezole (LCZ) and clonazepam (CZP), ethosuximide (ETS), phenobarbital (PB), and valproate (VPA) in suppressing pentylenetetrazole (PTZ)-induced seizures and in producing acute neurotoxic adverse effects in the chimney test in mice so as to identify optimum combinations. Moreover, protective indices (PIs) and benefit indices (BIs) were calculated so that a ranking in relation to advantageous combination could be established. Any pharmacokinetic contribution was ascertained by measurement of brain antiepileptic drug (AED) concentrations. All AED combinations comprising LCZ and CZP, ETS, PB, and VPA (at the fixed ratios of 1:3, 1:1, and 3:1) were additive in their seizure suppression. However, these interactions were complicated by changes in brain AED concentrations consequent to pharmacokinetic interactions. Thus, LCZ significantly increased total brain ETS concentrations (VPA, CZP, and PB concentrations were unaffected), and ETS decreased, and VPA increased, total brain LCZ concentrations. Only combinations of LCZ with CZP and PB were completely free of any pharmacokinetic interaction. Furthermore, in the chimney test, isobolographic analysis showed that the combination of LCZ and CZP, at the fixed ratio of 1:1, was supra-additive (synergistic, P<0.05), whereas LCZ and ETS at fixed ratios of 1:3 and 1:1 were subadditive (antagonistic, P<0.05). The remaining combinations of LCZ with CZP (1:3 and 3:1), ETS (3:1), PB (all fixed ratios of 1:3, 1:1, and 3:1), and VPA (at the fixed ratios of 1:3, 1:1, and 3:1) barely displayed additivity. In conclusion, BI, which is a measure of the margin of safety and tolerability of drugs in combination and comprises anticonvulsant and neurotoxic measures, was favorable for only one combination (LCZ and ETS at a fixed ratio of 1:3) with a value of 1.39. In contrast, LCZ and CZP constitute an unfavorable combination (BI=0.61-1.01). The combinations of LCZ with PB or VPA do not offer any advantage as assessed by the parameters (BI range: 0.75-0.91) used in this study. However, these conclusions are confounded by the fact that LCZ is associated with significant pharmacokinetic interactions.
Collapse
Affiliation(s)
- Jarogniew J Luszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL-20-090 Lublin, Poland.
| | | | | | | |
Collapse
|