1
|
Tian S, Yuan Y, Luo F, Lin C, Wang J, Qiu B, Lin Z, Wang W. Dual Self-Amplification Homogeneous Electrochemiluminescence Biosensor for Terminal Deoxynucleotidyl Transferase Activity Based on Controlling the Surface Morphology and Charge of Reporter Nanoparticles. Anal Chem 2023; 95:18603-18610. [PMID: 38048177 DOI: 10.1021/acs.analchem.3c04579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is upregulated in several types of leukemia and is considered a disease biomarker and a potential therapeutic target for leukemia. In this research, a homogeneous electrochemiluminescence (ECL) method based on the control of surface charge and morphology of tris (2,2'-bipyridine) ruthenium(II) chloride hexahydrate-doped silica nanoparticles (Ru@SiO2 NPs) has been designed for TdT activity detection. A small amount of short single-stranded DNA (ssDNA) was modified onto the surface of Ru@SiO2 NPs, and the nanoparticles with a slight positive charge experienced electrostatic attraction with the indium tin oxide (ITO) electrode with a negative charge, so relatively high ECL signals had been detected. Under the action of TdT, the ssDNA was significantly elongated, carrying numerous negative charges on its phosphate backbone, so the overall negative charge of the reporter nanoparticles was enhanced, resulting in a strong electrostatic repulsion with the ITO electrode. Simultaneously, the long ssDNA wrapped around the nanoparticles hindered the approach of the coreactant. Due to the dual effects, the ECL response of the system decreased. The constructed biosensor exhibited excellent sensitivity toward TdT over a range spanning from 1 to 100 U/L. The limit of detection is as low as 1.78 U/L. The developed approach was effectively applied to detect TdT activity in leukemic patients' leukocyte extracts.
Collapse
Affiliation(s)
- Shaohua Tian
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Yong Yuan
- Department of Translational Medicine, Zhongshan People's Hospital, Zhongshan 528400, Guangdong, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Weijia Wang
- Department of Translational Medicine, Zhongshan People's Hospital, Zhongshan 528400, Guangdong, China
| |
Collapse
|
2
|
Kaiser FMP, Janowska I, Menafra R, de Gier M, Korzhenevich J, Pico-Knijnenburg I, Khatri I, Schulz A, Kuijpers TW, Lankester AC, Konstantinidis L, Erlacher M, Kloet S, van Schouwenburg PA, Rizzi M, van der Burg M. IL-7 receptor signaling drives human B-cell progenitor differentiation and expansion. Blood 2023; 142:1113-1130. [PMID: 37369082 PMCID: PMC10644098 DOI: 10.1182/blood.2023019721] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Although absence of interleukin-7 (IL-7) signaling completely abrogates T and B lymphopoiesis in mice, patients with severe combined immunodeficiency caused by mutations in the IL-7 receptor α chain (IL-7Rα) still generate peripheral blood B cells. Consequently, human B lymphopoiesis has been thought to be independent of IL-7 signaling. Using flow cytometric analysis and single-cell RNA sequencing of bone marrow samples from healthy controls and patients who are IL-7Rα deficient, in combination with in vitro modeling of human B-cell differentiation, we demonstrate that IL-7R signaling plays a crucial role in human B lymphopoiesis. IL-7 drives proliferation and expansion of early B-cell progenitors but not of pre-BII large cells and has a limited role in the prevention of cell death. Furthermore, IL-7 guides cell fate decisions by enhancing the expression of BACH2, EBF1, and PAX5, which jointly orchestrate the specification and commitment of early B-cell progenitors. In line with this observation, early B-cell progenitors of patients with IL-7Rα deficiency still expressed myeloid-specific genes. Collectively, our results unveil a previously unknown role for IL-7 signaling in promoting the B-lymphoid fate and expanding early human B-cell progenitors while defining important differences between mice and humans. Our results have implications for hematopoietic stem cell transplantation strategies in patients with T- B+ severe combined immunodeficiency and provide insights into the role of IL-7R signaling in leukemogenesis.
Collapse
Affiliation(s)
- Fabian M. P. Kaiser
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Melanie de Gier
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center, University Ulm, Ulm, Germany
| | - Taco W. Kuijpers
- Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Arjan C. Lankester
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas Konstantinidis
- Department of Orthopedics and Trauma Surgery, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Susan Kloet
- Leiden Genome Technology Center, Leiden, The Netherlands
| | - Pauline A. van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
A cathode photoelectrochemical assay of terminal deoxynucleotidyl transferase activity based on Ag-AgI-CNTs composite and surface multisite strand displacement amplification. Biosens Bioelectron 2021; 181:113152. [PMID: 33725504 DOI: 10.1016/j.bios.2021.113152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
Photocathode-based assay is anti-interference for real sample detection. Photocathode produces low photocurrent signal and gives rise to poor sensitivity. Herein, a novel cathode photoelectrochemical (CPEC) sensing platform based on Ag-AgI-CNTs as photocathode material and K3[Fe(CN)6] as photoelectron acceptor was established. Since [Fe(CN)6]3- effectively accepted photoelectrons from Ag-AgI-CNTs, it greatly enhanced the CPEC response. Combining a surface multisite strand displacement amplification (SMSDA) strategy, the CPEC platform was applied for the activity assay of terminal deoxynucleotidyl transferase (TdT). In this proposal, oligo dT primer tethered on CPEC platform was in-situ extended to generate a polyA tail. Then the polyA tail formed a stable multi-point hybrid structure with the adjacent oligo dT. After launching the SMSDA, the CPEC platform was covered by more elongated polynucleotide chains and network, which acutely hampered the photoelectron transfer (eT) between photocathode and electron acceptor and caused a reduced photocurrent. The CPEC sensor possessed a satisfactory linear response from 6 × 10-5-0.1 U and a low detection limit of 1.1 × 10-5 U. The strategy offered a more specific and sensitive method for TdT activity assay. It was feasible in the field of TdT-based biochemical research, drug screening, and disease diagnosis.
Collapse
|
4
|
Romeo MV, López-Martínez E, Berganza-Granda J, Goñi-de-Cerio F, Cortajarena AL. Biomarker sensing platforms based on fluorescent metal nanoclusters. NANOSCALE ADVANCES 2021; 3:1331-1341. [PMID: 36132872 PMCID: PMC9419537 DOI: 10.1039/d0na00796j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/10/2021] [Indexed: 05/07/2023]
Abstract
Metal nanoclusters (NCs) and their unique properties are increasing in importance and their applications are covering a wide range of areas. Their remarkable fluorescence properties and easy synthesis procedure and the possibility of functionalizing them for the detection of specific targets, such as biomarkers, make them a very interesting biosensing tool. Nowadays the detection of biomarkers related to different diseases is critical. In this context, NCs scaffolded within an appropriate molecule can be used to detect and quantify biomarkers through specific interactions and fluorescence properties of the NCs. These methods include analytical detection and biolocalization using imaging techniques. This review covers a selection of recent strategies to detect biomarkers related to diverse diseases (from infectious, inflammatory, or tumour origin) using fluorescent nanoclusters.
Collapse
Affiliation(s)
- María V Romeo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Elena López-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Jesús Berganza-Granda
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
5
|
Jaconi M, Magni F, Raimondo F, Ponzoni M, Chinello C, Smith A, Piga I, Fusco N, Di Bella C, Pagni F. TdT expression in germ cell tumours: a possible immunohistochemical cross-reaction and diagnostic pitfall. J Clin Pathol 2019; 72:536-541. [PMID: 31055472 DOI: 10.1136/jclinpath-2019-205713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 11/04/2022]
Abstract
AIMS Very recent papers proposed a possible role for the expression of terminal deoxynucleotidyl transferase (TdT) in the tumourigenesis of gonadal and extragonadal germ cell-derived tumours (GCTs). Our multicentric study evaluated the magnitude of the immunoreactivity for TdT in GCTs, encompassing seminoma, dysgerminoma, mature teratoma and mixed GCTs. METHODS AND RESULTS The histological series was stained with both monoclonal and polyclonal antibodies, yielding a positivity of 80% of cases with well-defined nuclear reactivity. A significant difference in staining intensity between monoclonal and polyclonal antibodies was observed (p=0.005). However, exploiting western blot and more innovative proteomic approaches, no clear-cut evidence of the TdT protein was observed in the neoplastic tissues of the series. CONCLUSIONS Alternatively to the pathogenetic link between TdT expression and GCTs tumourigenesis, we hypothesised the occurrence of a spurious immunohistochemical nuclear cross-reaction, a well-known phenomenon with important implications and a possible source of diagnostic pitfalls in routine practice for pathologists.
Collapse
Affiliation(s)
- Marta Jaconi
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Francesca Raimondo
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | | | - Clizia Chinello
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Camillo Di Bella
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University Milan Bicocca, Milan, Italy
| |
Collapse
|
6
|
Chi BZ, Wang CL, Wang ZQ, Pi T, Zhong XL, Deng CQ, Feng YC, Li ZM. Fluorometric determination of the activity of the biomarker terminal deoxynucleotidyl transferase via the enhancement of the fluorescence of silver nanoclusters by in-situ grown DNA tails. Mikrochim Acta 2019; 186:241. [DOI: 10.1007/s00604-019-3288-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/29/2019] [Indexed: 11/28/2022]
|
7
|
Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B. Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically generated DNA as template. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2065-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Berdis AJ. DNA Polymerases That Perform Template-Independent DNA Synthesis. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Motea EA, Berdis AJ. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1151-66. [PMID: 19596089 DOI: 10.1016/j.bbapap.2009.06.030] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/27/2009] [Accepted: 06/30/2009] [Indexed: 01/06/2023]
Abstract
Nearly every DNA polymerase characterized to date exclusively catalyzes the incorporation of mononucleotides into a growing primer using a DNA or RNA template as a guide to direct each incorporation event. There is, however, one unique DNA polymerase designated terminal deoxynucleotidyl transferase that performs DNA synthesis using only single-stranded DNA as the nucleic acid substrate. In this chapter, we review the biological role of this enigmatic DNA polymerase and the biochemical mechanism for its ability to perform DNA synthesis in the absence of a templating strand. We compare and contrast the molecular events for template-independent DNA synthesis catalyzed by terminal deoxynucleotidyl transferase with other well-characterized DNA polymerases that perform template-dependent synthesis. This includes a quantitative inspection of how terminal deoxynucleotidyl transferase binds DNA and dNTP substrates, the possible involvement of a conformational change that precedes phosphoryl transfer, and kinetic steps that are associated with the release of products. These enzymatic steps are discussed within the context of the available structures of terminal deoxynucleotidyl transferase in the presence of DNA or nucleotide substrate. In addition, we discuss the ability of proteins involved in replication and recombination to regulate the activity of the terminal deoxynucleotidyl transferase. Finally, the biomedical role of this specialized DNA polymerase is discussed focusing on its involvement in cancer development and its use in biomedical applications such as labeling DNA for detecting apoptosis.
Collapse
Affiliation(s)
- Edward A Motea
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
10
|
Fowler JD, Suo Z. Biochemical, structural, and physiological characterization of terminal deoxynucleotidyl transferase. Chem Rev 2007; 106:2092-110. [PMID: 16771444 DOI: 10.1021/cr040445w] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason D Fowler
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|