1
|
Barisas DAG, Choi K. Extramedullary hematopoiesis in cancer. Exp Mol Med 2024; 56:549-558. [PMID: 38443597 PMCID: PMC10985111 DOI: 10.1038/s12276-024-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.
Collapse
Affiliation(s)
- Derek A G Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Depoërs L, Dumont-Lagacé M, Trinh VQH, Houques C, Côté C, Larouche JD, Brochu S, Perreault C. Klf4 protects thymus integrity during late pregnancy. Front Immunol 2023; 14:1016378. [PMID: 37180153 PMCID: PMC10174329 DOI: 10.3389/fimmu.2023.1016378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Pregnancy causes abrupt thymic atrophy. This atrophy is characterized by a severe decrease in the number of all thymocyte subsets and qualitative (but not quantitative) changes in thymic epithelial cells (TECs). Pregnancy-related thymic involution is triggered by progesterone-induced functional changes affecting mainly cortical TECs (cTECs). Remarkably, this severe involution is rapidly corrected following parturition. We postulated that understanding the mechanisms of pregnancy-related thymic changes could provide novel insights into signaling pathways regulating TEC function. When we analyzed genes whose expression in TECs was modified during late pregnancy, we found a strong enrichment in genes bearing KLF4 transcription factor binding motifs. We, therefore, engineered a Psmb11-iCre : Klf4lox/lox mouse model to study the impact of TEC-specific Klf4 deletion in steady-state conditions and during late pregnancy. Under steady-state conditions, Klf4 deletion had a minimal effect on TEC subsets and did not affect thymic architecture. However, pregnancy-induced thymic involution was much more pronounced in pregnant females lacking Klf4 expression in TECs. These mice displayed a substantial ablation of TECs with a more pronounced loss of thymocytes. Transcriptomic and phenotypic analyses of Klf4 -/- TECs revealed that Klf4 maintains cTEC numbers by supporting cell survival and preventing epithelial-to-mesenchymal plasticity during late pregnancy. We conclude that Klf4 is essential for preserving TEC's integrity and mitigating thymic involution during late pregnancy.
Collapse
Affiliation(s)
- Lucyle Depoërs
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Maude Dumont-Lagacé
- ExCellThera, Inc., Montréal, QC, Canada
- Piercing Star Technologies, Rabat, Morocco
| | - Vincent Quoc-Huy Trinh
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cellular Biology, Institute for Research in Immunology and Cancer, and Centre de recherche du Centre hospitalier de l’Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Chloé Houques
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Caroline Côté
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-David Larouche
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Brochu
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| | - Claude Perreault
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| |
Collapse
|
3
|
Saglam A, Singh K, Gollapudi S, Kumar J, Brar N, Butzmann A, Warnke R, Ohgami RS. Indolent T-lymphoblastic proliferation: A systematic review of the literature analyzing the epidemiologic, clinical, and pathologic features of 45 cases. Int J Lab Hematol 2022; 44:700-711. [PMID: 35577551 DOI: 10.1111/ijlh.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
Abstract
An indolent T-lymphoblastic proliferation (iT-LBP) is a rare benign disorder characterized by an abnormal expansion of immature T-cells, which morphologically can mimic malignancy. Since the first case was described in 1999, dozens more have been reported in the literature. However, the epidemiologic, clinical, pathologic, and biologic features of this disease have not been well described. Here, we retrospectively reviewed all known cases reported in the literature to better understand this entity. A PubMed search up to January 2022 highlighted 25 papers describing cases/case series of iT-LBP, one of which was a case presentation in a slide workshop. Except for 9 of the cases in one of the papers, where it was evident that the number of CD3+/TdT+ cells were too few to conform with a diagnosis of iT-LBP, all papers and all the cases reported were included in the study amounting to a total of 45 cases. Clinicopathologic characteristics were analyzed using descriptive statistics and frequencies. Our analysis highlighted the previously known association with Castleman disease and Castleman-like features and underlined its association with dendritic cell proliferations in general, as well as uncovering high frequency of concurrence with hepatocellular carcinoma and autoimmune diseases, most notably myasthenia gravis, paraneoplastic pemphigus and paraneoplastic autoimmune multiorgan syndrome. Furthermore, the co-expression of CD4 and CD8 and high prevalence of extranodal disease and recurrences were other less well described features that were revealed.
Collapse
Affiliation(s)
- Arzu Saglam
- Department of Pathology, Hacettepe University, Ankara, Turkey
| | - Kunwar Singh
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Sumanth Gollapudi
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Jyoti Kumar
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Nivaz Brar
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Alexandra Butzmann
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Roger Warnke
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Robert S Ohgami
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
St-Pierre C, Morgand E, Benhammadi M, Rouette A, Hardy MP, Gaboury L, Perreault C. Immunoproteasomes Control the Homeostasis of Medullary Thymic Epithelial Cells by Alleviating Proteotoxic Stress. Cell Rep 2018; 21:2558-2570. [PMID: 29186691 DOI: 10.1016/j.celrep.2017.10.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 01/07/2023] Open
Abstract
The sole nonredundant role of the thymic medulla is to induce central tolerance, a vital process that depends on promiscuous gene expression (pGE), a unique feature of medullary thymic epithelial cells (mTECs). Although pGE enhances transcription of >3,000 genes in mTECs, its impact on the regulation of protein homeostasis remains unexplored. Here, we report that, because of pGE, mature mTECs synthesize substantially more proteins than other cell types and are exquisitely sensitive to loss of immunoproteasomes (IPs). Indeed, IP deficiency causes proteotoxic stress in mTECs and leads to exhaustion of postnatal mTEC progenitors. Moreover, IP-deficient mice show accelerated thymic involution, which is characterized by a selective loss of mTECs and multiorgan autoimmune manifestations. We conclude that pGE, the quintessential feature of mTECs, is a major burden for the maintenance of proteostasis, which is alleviated by the constitutive expression of IPs in mTECs.
Collapse
Affiliation(s)
- Charles St-Pierre
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Erwan Morgand
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; ENS Paris-Saclay, Université Paris-Saclay, Cachan 94230, France
| | - Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Alexandre Rouette
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Louis Gaboury
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
5
|
CRISPR/Cas9-Mediated Deletion of Foxn1 in NOD/SCID/IL2rg -/- Mice Results in Severe Immunodeficiency. Sci Rep 2017; 7:7720. [PMID: 28798321 PMCID: PMC5552779 DOI: 10.1038/s41598-017-08337-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022] Open
Abstract
Immunodeficient mice engrafted with either normal or cancerous human cells are widely used in basic and translational research. In particular, NOD/SCID/IL2rg−/− mice can support the growth of various types of human cancer cells. However, the hairs of these mice interfere with the observation and imaging of engrafted tissues. Therefore, novel hairless strains exhibiting comparable immunodeficiency would be beneficial. Recently, the CRISPR/Cas9 system has been used for efficient multiplexed genome editing. In the present study, we generated a novel strain of nude NOD/SCID/IL2rg−/− (NSIN) mice by knocking out Foxn1 from NOD/SCID/IL2rg−/− (NSI) mice using the CRISPR/Cas9 system. The NSIN mice were deficient in B, T, and NK cells and not only showed impaired T cell reconstitution and thymus regeneration after allogeneic bone marrow nucleated cell transplantation but also exhibited improved capacity to graft both leukemic and solid tumor cells compared with NSI, NOG, and NDG mice. Moreover, the NSIN mice facilitated the monitoring and in vivo imaging of both leukemia and solid tumors. Therefore, our NSIN mice provide a new platform for xenograft mouse models in basic and translational research.
Collapse
|
6
|
Mysm1 is required for interferon regulatory factor expression in maintaining HSC quiescence and thymocyte development. Cell Death Dis 2016; 7:e2260. [PMID: 27277682 PMCID: PMC5143390 DOI: 10.1038/cddis.2016.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
Mysm1(-/-) mice have severely decreased cellularity in hematopoietic organs. We previously revealed that Mysm1 knockout impairs self-renewal and lineage reconstitution of HSCs by abolishing the recruitment of key transcriptional factors to the Gfi-1 locus, an intrinsic regulator of HSC function. The present study further defines a large LSKs in >8-week-old Mysm1(-/-) mice that exhibit increased proliferation and reduced cell lineage differentiation compared with those of WT LSKs. We found that IRF2 and IRF8, which are important for HSC homeostasis and commitment as transcription repressors, were expressed at lower levels in Mysm1(-/-) HSCs, and Mysm1 enhanced function of the IRF2 and IRF8 promoters, suggesting that Mysm1 governs the IRFs for HSC homeostasis. We further found that the lower expressions of IRF2 and IRF8 led to an enhanced transcription of p53 in Mysm1(-/-) HSCs, which was recently defined to have an important role in mediating Mysm1(-/-)-associated defects. The study also revealed that Mysm1(-/-) thymocytes exhibited lower IRF2 expression, but had higher Sca1 expression, which has a role in mediating thymocyte death. Furthermore, we found that the thymocytes from B16 melanoma-bearing mice, which display severe thymus atrophy at late tumor stages, exhibited reduced Mysm1 and IRF2 expression but enhanced Sca1 expression, suggesting that tumors may downregulate Mysm1 and IRF2 for thymic T-cell elimination.
Collapse
|
7
|
|
8
|
Kansal R, Nathwani BN, Yiakoumis X, Moschogiannis M, Sachanas S, Stefanaki K, Pangalis GA. Exuberant cortical thymocyte proliferation mimicking T-lymphoblastic lymphoma within recurrent large inguinal lymph node masses of localized Castleman disease. Hum Pathol 2015; 46:1057-61. [DOI: 10.1016/j.humpath.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/08/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
|
9
|
Coles M, Veiga-Fernandes H. Insight into lymphoid tissue morphogenesis. Immunol Lett 2013; 156:46-53. [PMID: 23954810 DOI: 10.1016/j.imlet.2013.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022]
Abstract
Secondary lymphoid organs (SLO) are crucial structures for immune-surveillance and rapid immune responses allowing resident lymphocytes to encounter antigen-presenting cells that carry antigens from peripheral tissues. These structures develop during embryonic life through a tightly regulated process that involves interactions between haematopoietic and mesenchymal cells. Importantly, this morphogenesis potential is maintained throughout life since in chronic inflammatory conditions novel "tertiary lymphoid organs" can be generated by processes that are reminiscent of embryonic SLO development. In this review we will discuss early events in SLO morphogenesis, focusing on haematopoietic and mesenchymal cell subsets implicated on the development of lymphoid organs.
Collapse
Affiliation(s)
- Mark Coles
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
10
|
Romano R, Palamaro L, Fusco A, Giardino G, Gallo V, Del Vecchio L, Pignata C. FOXN1: A Master Regulator Gene of Thymic Epithelial Development Program. Front Immunol 2013; 4:187. [PMID: 23874334 PMCID: PMC3709140 DOI: 10.3389/fimmu.2013.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
T cell ontogeny is a sophisticated process, which takes place within the thymus through a series of well-defined discrete stages. The process requires a proper lympho-stromal interaction. In particular, cortical and medullary thymic epithelial cells (cTECs, mTECs) drive T cell differentiation, education, and selection processes, while the thymocyte-dependent signals allow thymic epithelial cells (TECs) to maturate and provide an appropriate thymic microenvironment. Alterations in genes implicated in thymus organogenesis, including Tbx1, Pax1, Pax3, Pax9, Hoxa3, Eya1, and Six1, affect this well-orchestrated process, leading to disruption of thymic architecture. Of note, in both human and mice, the primordial TECs are yet unable to fully support T cell development and only after the transcriptional activation of the Forkhead-box n1 (FOXN1) gene in the thymic epithelium this essential function is acquired. FOXN1 is a master regulator in the TEC lineage specification in that it down-stream promotes transcription of genes, which, in turn, regulate TECs differentiation. In particular, FOXN1 mainly regulates TEC patterning in the fetal stage and TEC homeostasis in the post-natal thymus. An inborn null mutation in FOXN1 leads to Nude/severe combined immunodeficiency (SCID) phenotype in mouse, rat, and humans. In Foxn1−/− nude animals, initial formation of the primordial organ is arrested and the primordium is not colonized by hematopoietic precursors, causing a severe primary T cell immunodeficiency. In humans, the Nude/SCID phenotype is characterized by congenital alopecia of the scalp, eyebrows, and eyelashes, nail dystrophy, and a severe T cell immunodeficiency, inherited as an autosomal recessive disorder. Aim of this review is to summarize all the scientific information so far available to better characterize the pivotal role of the master regulator FOXN1 transcription factor in the TEC lineage specifications and functionality.
Collapse
Affiliation(s)
- Rosa Romano
- Department of Translational Medical Sciences, "Federico II" University , Naples , Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Kong N, Zhang X, Wang H, Mu X, Han H, Yan W. Inhibition of Growth and Induction of Differentiation of SMMC-7721 Human Hepatocellular Carcinoma Cells by Oncostatin M. Asian Pac J Cancer Prev 2013; 14:747-52. [DOI: 10.7314/apjcp.2013.14.2.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Lang J, Kelly M, Freed BM, McCarter MD, Kedl RM, Torres RM, Pelanda R. Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation. THE JOURNAL OF IMMUNOLOGY 2013; 190:2090-101. [PMID: 23335750 DOI: 10.4049/jimmunol.1202810] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hematopoietic humanized mouse (hu-mouse) model is a powerful resource to study and manipulate the human immune system. However, a major and recurrent issue with this model has been the poor maturation of B cells that fail to progress beyond the transitional B cell stage. Of interest, a similar problem has been reported in transplant patients who receive cord blood stem cells. In this study, we characterize the development of human B and T cells in the lymph nodes (LNs) and spleen of BALB/c-Rag2(null)Il2rγ(null) hu-mice. We find a dominant population of immature B cells in the blood and spleen early, followed by a population of human T cells, coincident with the detection of LNs. Notably, in older mice we observe a major population of mature B cells in LNs and in the spleens of mice with higher T cell frequencies. Moreover, we demonstrate that T cells are necessary for B cell maturation, as introduction of autologous human T cells expedites the appearance of mature B cells, whereas in vivo depletion of T cells retards B cell maturation. The presence of the mature B cell population correlates with enhanced IgG and Ag-specific responses to both T cell-dependent and T cell-independent challenges, indicating their functionality. These findings enhance our understanding of human B cell development, provide increased details of the reconstitution dynamics of hu-mice, and validate the use of this animal model to study mechanisms and treatments for the similar delay of functional B cells associated with cord blood transplantations.
Collapse
Affiliation(s)
- Julie Lang
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Rafei M, Hardy MP, Williams P, Vanegas JR, Forner KA, Dulude G, Labrecque N, Galipeau J, Perreault C. Development and function of innate polyclonal TCRalphabeta+ CD8+ thymocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:3133-44. [PMID: 21844388 DOI: 10.4049/jimmunol.1101097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Innate CD8 T cells are found in mutant mouse models, but whether they are produced in a normal thymus remains controversial. Using the RAG2p-GFP mouse model, we found that ∼10% of TCRαβ(+) CD4(-)CD8(+) thymocytes were innate polyclonal T cells (GFP(+)CD44(hi)). Relative to conventional T cells, innate CD8 thymocytes displayed increased cell surface amounts of B7-H1, CD2, CD5, CD38, IL-2Rβ, and IL-4Rα and downmodulation of TCRβ. Moreover, they overexpressed several transcripts, including T-bet, Id3, Klf2, and, most of all, Eomes. Innate CD8 thymocytes were positively selected, mainly by nonhematopoietic MHCIa(+) cells. They rapidly produced high levels of IFN-γ upon stimulation and readily proliferated in response to IL-2 and IL-4. Furthermore, low numbers of innate CD8 thymocytes were sufficient to help conventional CD8 T cells expand and secrete cytokine following Ag recognition. This helper effect depended on CD44-mediated interactions between innate and conventional CD8 T cells. We concluded that innate TCRαβ(+) CD8 T cells represent a sizeable proportion of normal thymocytes whose development and function differ in many ways from those of conventional CD8 T cells.
Collapse
Affiliation(s)
- Moutih Rafei
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alitheen NB, McClure S, McCullagh P. B-cell development: one problem, multiple solutions. Immunol Cell Biol 2010; 88:445-50. [PMID: 20084079 DOI: 10.1038/icb.2009.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interspecies variations in the processes of B-cell development and repertoire generation contrast with the greater consistency of T-cell development. B-cell development in mice and humans, with postnatal B-cell generation of new repertoire in the bone marrow throughout life, is regarded as the 'standard' pattern. In contrast, accounts of B cells in birds, sheep, cattle, rabbits and pigs (the 'other' species) describe cessation of gene diversification in the perinatal period, with the gut-associated lymphoid tissue (GALT) functioning as the primary lymphoid organ thereafter. It has become customary to regard the developmental pathways of T and B cells within any individual species as being as dissimilar as the functions of the two mature cell types. Reinterpretation of B-cell development patterns in different species is overdue in response to two types of reports. The first of these describe T-B 'crossover', specifically the intrathymic production of B cells and the extrathymic production of T cells. The second attests to the extent of sharing of B-cell developmental features across the two groups of species. We propose that, as is a feature of other haematopoietic cells, a menu of alternative B- and T-cell pathways has been retained and shared across species. A single pathway usually predominates in any species, masking alternatives. The observed predominance of any pathway is determined by factors such as placental permeability, extent of maturation of the immune system by birth and the feasibility of direct experimental intervention in development.
Collapse
Affiliation(s)
- Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | | |
Collapse
|
15
|
Perreault C. The Origin and Role of MHC Class I-Associated Self-Peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:41-60. [DOI: 10.1016/s1877-1173(10)92003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Madoiwa S, Yamauchi T, Kobayashi E, Hakamata Y, Dokai M, Makino N, Kashiwakura Y, Ishiwata A, Ohmori T, Mimuro J, Sakata Y. Induction of factor VIII-specific unresponsiveness by intrathymic factor VIII injection in murine hemophilia A. J Thromb Haemost 2009; 7:811-24. [PMID: 19220731 DOI: 10.1111/j.1538-7836.2009.03314.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SUMMARY BACKGROUND Hemophilia A is a congenital bleeding disorder caused by a deficiency of coagulation factor VIII. Approximately 30% of hemophilia A patients develop inhibitors against FVIII following replacement therapy. We have reported that neonatal exposure of FVIII antigen can induce antigen-specific immune tolerance by interferon-gamma (IFN-gamma)-dependent T-cell anergy in hemophilia A mice. OBJECTIVE The thymus plays crucial roles in self-tolerance, with negative selection of self-reactive effector T cells and positive selection of self-reactive regulatory T cells. We investigated the possibility of the induction of antigen-specific immune tolerance by intrathymic injection of FVIII in hemophilia A mice. METHODS Hemophilia A mice were injected with recombinant FVIII into the thymus under real-time high-resolution image guidance. RESULTS Anti-FVIII inhibitory antibody titers in mice challenged with intravenous administration of FVIII were significantly lower in mice (n = 22) that had received thymic FVIII injection than in mice (n = 18) without thymic injection (9.4 +/- 2.3 vs. 122.5 +/- 27.6 BU mL(-1), respectively, P = 0.00078). The CD4(+) T cells from thymic-injected mice could not proliferate or produce interleukin (IL)-2, IL-12 and IFN-gamma in response to FVIII. The CD4(+)CD25(+) T cells generated from thymic-treated mice but not from naïve mice efficiently suppressed the in vitro proliferative response of CD4(+) T cells and blocked the in vivo development of anti-FVIII antibodies in the adoptive transfer. CONCLUSION These data suggest that intrathymic administration of FVIII could result in immune tolerance by induction of FVIII-specific regulatory T cells.
Collapse
Affiliation(s)
- S Madoiwa
- Research Division of Cell and Molecular Medicine, Centre for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Juan TSC, Bolon B, Lindberg RA, Sun Y, Van G, Fletcher FA. Mice overexpressing murine oncostatin M (OSM) exhibit changes in hematopoietic and other organs that are distinct from those of mice overexpressing human OSM or bovine OSM. Vet Pathol 2009; 46:124-37. [PMID: 19112126 DOI: 10.1354/vp.46-1-124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncostatin M (OSM) and leukemia inhibitory factor (LIF) belong to the interleukin-6 family of cytokines. The authors' previous in vitro work demonstrated that in mouse cells mouse OSM (mOSM) signals through a heterodimeric receptor complex incorporating the mOSM-specific receptor mOSMRbeta while human OSM (hOSM) and bovine OSM (bOSM) use the mouse LIF receptor mLIFRbeta rather than mOSMRbeta. These in vitro data suggest that prior studies in mouse systems with hOSM or bOSM (the usual molecules used in early studies) reflect LIF rather than OSM biology. The current work assessed whether or not this divergence in actions among these three OSMs also occurs in vivo in mouse models. Adult female (C57BL/6J x DBA/2J) F(1) mice were engineered to stably overexpress mOSM, hOSM, or bOSM by retrovirus-mediated gene transfer (n = 10 or more per group). After 4 weeks, molecular and hematologic profiles and anatomic phenotypes in multiple organs were assessed by standard techniques. Animals overexpressing either hOSM or bOSM had an identical phenotype resembling that associated with LIF activation, including significant hematologic abnormalities (anemia, neutrophilia, lymphopenia, eosinopenia, and thrombocytosis); weight loss; profound enlargement (lymph node, spleen) and/or structural reorganization (lymph node, spleen, thymus) of lymphoid organs; and severe osteosclerosis. In contrast, mice overexpressing mOSM did not develop hematologic changes, weight loss, or osteosclerosis and exhibited more modest and anatomically distinct restructuring of lymphoid organs. These data indicate that activities imputed to OSM and the mOSMRbeta signaling pathway using in vitro and in vivo mouse experimental systems are unique to mOSM.
Collapse
Affiliation(s)
- T S-C Juan
- Department of Functional Genomics, Amgen Inc., Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Kovanen PE, Bernard J, Al-Shami A, Liu C, Bollenbacher-Reilley J, Young L, Pise-Masison C, Spolski R, Leonard WJ. T-cell development and function are modulated by dual specificity phosphatase DUSP5. J Biol Chem 2008; 283:17362-9. [PMID: 18430737 DOI: 10.1074/jbc.m709887200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interleukin-2 (IL-2) is a pleiotropic cytokine that regulates lymphocyte proliferation and peripheral tolerance. IL-2 activates mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase, and signal transducer and activator of transcription (STAT) pathways and modulates expression of target genes. Systematic analysis of IL-2 target genes has revealed regulation of potential feedback inhibitors of IL-2 signaling, including several suppressor of cytokine signaling (SOCS) family members as well as MAPK pathway-regulating dual specificity phosphatases (DUSPs). Here we have evaluated the in vivo actions of DUSP5, an extracellular signal-regulated kinase 1/2 (ERK1/2)-specific phosphatase, by generating transgenic mice overexpressing DUSP5 within the lymphoid compartment. We show that transgenic DUSP5 expression results in a block in thymocyte development at the double positive stage. We also demonstrate that DUSP5-expressing mature T cells exhibit decreased IL-2-dependent proliferation and defective IL-2-mediated induction of genes. Finally, DUSP5 transgenic mice develop autoimmune symptoms, suggesting a role for the MAPK pathway in the regulation of tolerance. Thus, proper regulation of DUSP5 activity is critical for normal immune system development, IL-2 actions, and tolerance.
Collapse
Affiliation(s)
- Panu E Kovanen
- Laboratory of Molecular Immunology, NHLBI, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Blais MÈ, Brochu S, Giroux M, Bélanger MP, Dulude G, Sékaly RP, Perreault C. Why T Cells of Thymic Versus Extrathymic Origin Are Functionally Different. THE JOURNAL OF IMMUNOLOGY 2008; 180:2299-312. [DOI: 10.4049/jimmunol.180.4.2299] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Shirshev SV, Kuklina EM, Maksimov AY, Krapivina OA, Parshakova NS. Extrathymic rearrangement of alphabetaT-lymphocyte antigen receptor genes during pregnancy. BIOCHEMISTRY (MOSCOW) 2007; 72:983-8. [PMID: 17922657 DOI: 10.1134/s000629790709009x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The existence of alphabetaT-lymphocyte differentiation processes have been demonstrated in mouse peripheral lymphoid organs during pregnancy. Study of pregnant Swiss mice has shown that the development of the second half of gestation is accompanied by expression of RAG-1 recombinase mRNA and unrearranged TCR alpha-chain (pre-TCRalpha) preferentially in T-lymphocytes of lymph nodes involved in uterine drainage (para-aortal lymph nodes), and to a lesser extent in other lymph nodes (mainly from axillary lymph nodes). The data suggest that during pregnancy the differentiation of alphabetaT lymphocytes may occur not only in central (thymus) but also in peripheral lymphoid organs.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm 614081, Russia
| | | | | | | | | |
Collapse
|
21
|
Onlamoon N, Plagman N, Rogers KA, Mayne AE, Bostik P, Pattanapanyasat K, Ansari AA, Villinger F. Anti-CD3/28 mediated expansion of macaque CD4+ T cells is polyclonal and provides extended survival after adoptive transfer. J Med Primatol 2007; 36:206-18. [PMID: 17669209 DOI: 10.1111/j.1600-0684.2007.00238.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Our lab has previously shown that adoptive transfer of in vitro expanded autologous purified polyclonal CD4(+) T cells using anti-CD3/CD28 coated beads induced antiviral responses capable of controlling simian immunodeficiency virus (SIV) replication in vivo. RESULTS Expansion on anti-CD3/28 coated beads was found to induce a true polyclonal expansion as CFSE labeled cells uniformly showed dilution of the dye over several days of culture, in contrast to aliquots of the same cells subjected to mitogen stimulation. Of interest was the finding that CD4(+) T cells collected before and during early chronic SIV infection or AIDS stage did not show any or only modest differences in proliferative response or expansion kinetics. The reason for such excellent expansion properties was analyzed by the quantitation of telomerase activity in aliquots of expanding CD4(+) T cells from sample collected at various times post-infection. First, anti-CD3/28 expanded CD4(+) T cells exhibited telomerase levels 2- to 20-fold higher than the starting population of CD4(+) T cells. Moreover, while telomerase activity in ex vivo tested CD4(+) T cells was found to decrease following SIV infection and disease progression, anti-CD3/28 expansion appeared to restore significant levels of telomerase activity as no difference was noted in telomerase expression between CD4(+) T cells expanded from samples collected before or during the chronic SIV infection. When such expanded and CFSE labeled T cells were autologously transferred to monkeys, evidence for extended survival in vivo was provided as CFSE labeled cells were detected to relatively high levels in blood and spleen at 1 week post-infection. CONCLUSION In summary, the data suggest that anti-CD3/28 mediated expansion of CD4(+) T cells retains its immunotherapeutic potential not only during the early stages of lentiviral infection but also at more advanced stages of disease.
Collapse
Affiliation(s)
- Nattawat Onlamoon
- Department of Pathology & Lab Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Cynthia Guidos
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|