1
|
Yeom M, Jeon K, Ryu DH, Park D, Jung E. Time-of-day dependent promotion of keratinocyte differentiation by Cinnamomum cassia bark extract through the p38 MAPK Pathway. PLoS One 2025; 20:e0318360. [PMID: 40100929 PMCID: PMC11918335 DOI: 10.1371/journal.pone.0318360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025] Open
Abstract
The skin serves as an essential barrier against pathogens and external insults, preventing moisture loss. Chronic skin conditions such as atopic dermatitis stem from impairments in skin barrier function. Circadian rhythms affect skin blood flow and barrier characteristics, which are significant for understanding atopic dermatitis. Cinnamomum cassia bark, commonly known as cinnamon, is extensively utilized in both modern and Traditional Chinese Medicine for its therapeutic properties in managing chronic diseases. This study aimed to investigate the potential use of Cinnamomum cassia bark in enhancing skin barrier function. We examined the impact of Cinnamomum cassia bark extract (CCBE) on circadian clock-mediated enhancement of the skin barrier. CCBE enhanced the expression of keratinocyte differentiation markers, including keratin 10, filaggrin, caspase 14, and calpain-1. CCBE also increased the production of hyaluronic acid protein. Additionally, CCBE improved the circadian rhythm of period circadian regulator 2 (PER2). Notably, CCBE upregulated the expression of keratinocyte differentiation markers and PER2 specifically during the morning hours. Furthermore, we discovered that siRNA-mediated PER2 knockdown diminished the increase in keratinocyte differentiation markers induced by CCBE. These findings demonstrate that CCBE can regulate the differentiation of keratinocytes in a time-of-day-dependent manner via the circadian clock. CCBE augmented phosphorylation of p38 and JNK, while the CCBE-induced enhancement in FLG expression and PER2 circadian rhythm was reduced by p38 MAPK inhibitors. These results suggest that CCBE can strengthen the skin barrier diurnally via the p38 MAPK pathway, representing a novel and more effective method for enhancing skin barrier function that accommodates daily variations in skin barrier properties.
Collapse
Affiliation(s)
- Miji Yeom
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| | - Kyungeun Jeon
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| | - De-Hun Ryu
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| | - Deokhoon Park
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| | - Eunsun Jung
- Biospectrum, Life Science Institute, Yongin-Si, Republic of Korea
| |
Collapse
|
2
|
Zhang F, Liu W, Mao Y, Yang Y, Ling C, Liu Y, Yao F, Zhen Y, Wang X, Zou M. Migrasome, a migration-dependent organelle. Front Cell Dev Biol 2024; 12:1417242. [PMID: 38903534 PMCID: PMC11187097 DOI: 10.3389/fcell.2024.1417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Migrasomes are organelles produced by migrating cells that form on retraction fibers and are released during cell migration. Migrasomes are involved in physiological and pathological processes such as intercellular communication, cell homeostasis maintenance, signal transduction, disease occurrence and development, and cancer metastasis. In addition, methods and techniques for studying migrasomes are constantly evolving. Here, we review the discovery, formation process, regulation, and known functions of migrasomes, summarize the commonly used specific markers of migrasomes, and the methods for observing migrasomes. Meanwhile, this review also discusses the potential applications of migrasomes in physiological processes, disease diagnosis, treatment, and prognosis, and looks forward to their wider application in biomedicine. In addition, the study of migrasomes will also reveal a new perspective on the mechanism of intercellular communication and promote the further development of life science.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mincheng Zou
- Department of Orthopaedics, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Cioce A, Cavani A, Cattani C, Scopelliti F. Role of the Skin Immune System in Wound Healing. Cells 2024; 13:624. [PMID: 38607063 PMCID: PMC11011555 DOI: 10.3390/cells13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Wound healing is a dynamic and complex process, characterized by the coordinated activities of multiple cell types, each with distinct roles in the stages of hemostasis, inflammation, proliferation, and remodeling. The cells of the immune system not only act as sentinels to monitor the skin and promote homeostasis, but they also play an important role in the process of skin wound repair. Skin-resident and recruited immune cells release cytokines and growth factors that promote the amplification of the inflammatory process. They also work with non-immune cells to remove invading pathogens and debris, as well as guide the regeneration of damaged host tissues. Dysregulation of the immune system at any stage of the process may lead to a prolongation of the inflammatory phase and the development of a pathological condition, such as a chronic wound. The present review aims to summarize the roles of different immune cells, with special emphasis on the different stages of the wound healing process.
Collapse
Affiliation(s)
| | | | | | - Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy; (A.C.); (A.C.); (C.C.)
| |
Collapse
|
4
|
Escuin-Ordinas H, Liu Y, Sun L, Hugo W, Dimatteo R, Huang RR, Krystofinski P, Azhdam A, Lee J, Comin-Anduix B, Cochran AJ, Lo RS, Segura T, Scumpia PO, Ribas A. Wound healing with topical BRAF inhibitor therapy in a diabetic model suggests tissue regenerative effects. PLoS One 2021; 16:e0252597. [PMID: 34161353 PMCID: PMC8221471 DOI: 10.1371/journal.pone.0252597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Wound healing is a multi-step process to rapidly restore the barrier function. This process is often impaired in diabetic patients resulting in chronic wounds and amputation. We previously found that paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway via topical administration of the BRAF inhibitor vemurafenib accelerates wound healing by activating keratinocyte proliferation and reepithelialization pathways in healthy mice. Herein, we investigated whether this wound healing acceleration also occurs in impaired diabetic wounds and found that topical vemurafenib not only improves wound healing in a murine diabetic wound model but unexpectedly promotes hair follicle regeneration. Hair follicles expressing Sox-9 and K15 surrounded by CD34+ stroma were found in wounds of diabetic and non-diabetic mice, and their formation can be prevented by blocking downstream MEK signaling. Thus, topically applied BRAF inhibitors may accelerate wound healing, and promote the restoration of improved skin architecture in both normal and impaired wounds.
Collapse
Affiliation(s)
- Helena Escuin-Ordinas
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- * E-mail: (AR); (HEO)
| | - Yining Liu
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, California, United States of America
| | - Lu Sun
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, California, United States of America
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, California, United States of America
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, California, United States of America
| | - Rong Rong Huang
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, United States of America
| | - Paige Krystofinski
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Ariel Azhdam
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Jordan Lee
- Department of Dermatology, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, California, United States of America
| | - Begoña Comin-Anduix
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, United States of America
| | - Alistair J. Cochran
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, United States of America
| | - Roger S. Lo
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Philip O. Scumpia
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, California, United States of America
- Department of Dermatology, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, California, United States of America
| | - Antoni Ribas
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
- Department of Biological Chemistry, UCLA, Los Angeles, California, United States of America
- * E-mail: (AR); (HEO)
| |
Collapse
|
5
|
ERK activating peptide, AES16-2M promotes wound healing through accelerating migration of keratinocytes. Sci Rep 2018; 8:14398. [PMID: 30258088 PMCID: PMC6158248 DOI: 10.1038/s41598-018-32851-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/13/2018] [Indexed: 11/09/2022] Open
Abstract
Wound healing is an important issue that influences quality of life, and the need for products associated with wound healing is growing annually. New materials and therapies for skin wounds are being continuously researched and developed in order to increase treatment efficacy. Here, we show that the peptide AES16-2M comprised of five short amino acid sequences (REGRT) demonstrates efficacy in wound healing. AES16-2M exerted more effective healing than the control in an acute wound model, and tissue regeneration was similar to that of normal tissue in AES16-2M-treated skin. We found that the increase in re-epithelialization by AES16-2M early in wound development was due to migration of keratinocytes; a scratch assay using a human keratinocyte cell line (HaCaT) also demonstrated effective wound closure by AES16-2M. The migration of keratinocytes effected by AES16-2M was promoted through ERK phosphorylation and blocked with U0126, an ERK inhibitor. Moreover, AES16-2M treatment stimulated human dermal fibroblast (HDF) migration as well as keratinocyte. Taken together, these results suggest that AES16-2M can be an effective therapeutic agent for wound healing by promoting migration of keratinocytes and fibroblasts via ERK phosphorylation.
Collapse
|
6
|
Meng X, Qiu L, Song H, Dang N. MAPK Pathway Involved in Epidermal Terminal Differentiation of Normal Human Epidermal Keratinocytes. Open Med (Wars) 2018; 13:189-195. [PMID: 29770357 PMCID: PMC5952426 DOI: 10.1515/med-2018-0029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/27/2018] [Indexed: 11/26/2022] Open
Abstract
Objective To investigate the effect of mitogen-activated protein kinase (MAPK) signaling pathway in epidermal terminal differentiation. Methods The MAPK pathways (p38, ERK1/2, JNK) were inhibited by SB203580, PD98059, and SP600125 in normal human epidermal keratinocytes (NHEKs), respectively. Western blotting assays were performed to detect expression of filaggrin and differentiation-related proteins. The mRNA expressions of differentiation-related proteins were detected by real-time quantitative PCR (qRT-PCR). Results Inhibition of MAPK pathway by SB203580, PD98059, and SP600125 resulted in significant reduction of filaggrin expression in NHEKs. Inhibition of the p38 MAPK pathway decreased the expression of differentiation-related proteins (cytokeratin 5, cytokeratin 14, ST14, and SPRR3), Akt, and NF-κB. Inhibition of JNK also suppressed expression of cytokeratin 14, SPRR3, Akt, and NF-κB. However, inhibition of ERK1/2 merely decreased expression of SPRR3 and Akt. Conclusion MAPK pathways regulates epidermal terminal differentiation in NHEKs. The p38 signaling pathway plays an especially important role.
Collapse
Affiliation(s)
- Xianguang Meng
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, China.,School of Medicine, Shandong University, Jinan Shandong Province, China
| | - Liyun Qiu
- Department of Pharmacy, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, China
| | - Haiyan Song
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, Shandong Province, China
| | - Ningning Dang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China, Tel: +86-0531-85695173
| |
Collapse
|
7
|
Dang N, Pang S, Song H, Bian H, Zhang X, An L, Ma X. Knockdown of filaggrin influences the epidermal terminal differentiation via MAPK pathway in normal human epidermal keratinocytes. Mol Biol Rep 2014; 42:337-43. [PMID: 25374427 DOI: 10.1007/s11033-014-3765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
Abstract
We aimed to gain further insight into the role of the MAPK signaling pathway in terminal differentiation of normal human epidermal keratinocytes (NHEKs) with filaggrin knockdown. Filaggrin expression was knocked down by shRNA technology and the MAPK pathways were inhibited by three different inhibitors in NHEKs. The associated mRNAs and proteins were investigated by RT-PCR and western blot. Filaggrin absence inhibited the expression of differentiation-associated proteins, and blocked the protein expression of p38 MAPK, ERK1/2, JNK, Akt and NF-κB. Moreover, inhibited p38 MAPK, instead of ERK1/2 or JNK, lead to decreases in the expressions of Akt, NF-κB, and differentiation- associated proteins. In conclusion, Filaggrin might affect the epidermal terminal differentiation mainly through the p38-MAPK, NF-κB and Akt pathways. ERK1/2 and JNK might also be involved in the process.
Collapse
Affiliation(s)
- Ningning Dang
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, 250013, Shandong Province, China,
| | | | | | | | | | | | | |
Collapse
|
8
|
Cdc42 inhibits ERK-mediated collagenase-1 (MMP-1) expression in collagen-activated human keratinocytes. J Invest Dermatol 2013; 134:1230-1237. [PMID: 24352036 PMCID: PMC3989453 DOI: 10.1038/jid.2013.499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 11/08/2022]
Abstract
Following injury, keratinocytes switch gene expression programs from the one that promotes differentiation to the one that supports migration. A common feature of human wounds and ulcerations of any form is the expression of matrix metalloproteinase 1 (MMP-1; collagenase-1) by leading-edge basal keratinocytes migrating across the dermal or provisional matrix. Induction of MMP-1 occurs by signaling from the α2β1 integrin in contact with dermal fibrillar type I collagen, and the activity of MMP-1 is required for human keratinocytes to migrate on collagen. Thus, MMP-1 serves a critical role in the repair of damaged human skin. Here, we evaluated the mechanisms controlling MMP-1 expression in primary human keratinocytes from neonatal foreskin and adult female skin. Our results demonstrate that shortly following contact with type I collagen extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase were markedly activated, whereas c-Jun N-terminal kinase (JNK) phosphorylation remained at basal levels. ERK inhibition markedly blocked collagen-stimulated MMP-1 expression in keratinocytes. In contrast, inhibiting p38 or JNK pathways had no effect on MMP-1 production. Moreover, investigating the role of Rho GTPases revealed that Cdc42 attenuates MMP-1 expression by suppressing ERK activity. Thus, our data indicate that injured keratinocytes induce MMP-1 expression through ERK activation, and this process is negatively regulated by Cdc42 activity.
Collapse
|
9
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
10
|
Rafehi H, El-Osta A, Karagiannis TC. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications 2012; 26:554-61. [PMID: 22739801 DOI: 10.1016/j.jdiacomp.2012.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes mellitus, a chronic metabolic disease associated with both predisposing genetic and environmental factors, is increasing globally. As a result, it is expected that there will also be an increasing incidence of diabetic complications which arise as a result of poor glycemic control. Complications include cardiovascular diseases, nephropathy, retinopathy and diabetic foot ulcers. The findings of several major clinical trials have identified that diabetic complications may arise even after many years of proper glycemic control. This has led to the concept of persistent epigenetic changes. Various epigenetic mechanisms have been identified as important contributors to the pathogenesis of diabetes and diabetic complications. The aim of this review is to provide an overview of the pathobiology of type 2 diabetes with an emphasis on complications, particularly diabetic foot ulcers. An overview of epigenetic mechanisms is provided and the focus is on the emerging evidence for aberrant epigenetic mechanisms in diabetic foot ulcers.
Collapse
Affiliation(s)
- Haloom Rafehi
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
11
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
12
|
Distinct roles of JNK-1 and ERK-2 isoforms in permeability barrier repair and wound healing. Eur J Cell Biol 2011; 90:565-71. [DOI: 10.1016/j.ejcb.2010.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 12/30/2022] Open
|
13
|
Development of atopic dermatitis-like skin disease from the chronic loss of epidermal caspase-8. Proc Natl Acad Sci U S A 2010; 107:22249-54. [PMID: 21135236 DOI: 10.1073/pnas.1009751108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atopic dermatitis is an inflammatory skin disease that affects approximately 20% of children worldwide. Left untreated, the barrier function of the skin is compromised, increasing susceptibility to dehydration and infection. Despite its prevalence, its multifactorial nature has complicated the unraveling of its etiology. We found that chronic loss of epidermal caspase-8 recapitulates many aspects of atopic dermatitis, including a spongiotic phenotype whereby intercellular adhesion between epidermal keratinocytes is disrupted, adversely affecting tissue architecture and function. Although spongiosis is generally thought to be secondary to edema, we found that suppression of matrix metalloproteinase-2 activity is sufficient to abrogate this defect. p38 MAPK induces matrix metalloproteinase-2 expression to cleave E-cadherin, which mediates keratinocyte cohesion in the epidermis. Thus, the conditional loss of caspase-8, which we previously found to mimic a wound response, can be used to gain insights into how these same wound-healing processes are commandeered in inflammatory skin diseases.
Collapse
|
14
|
Affiliation(s)
- Tanya J Shaw
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
15
|
Zhou CL, Yu XJ, Chen LM, Jiang H, Li CY. Corticotropin-releasing hormone attenuates vascular endothelial growth factor release from human HaCaT keratinocytes. ACTA ACUST UNITED AC 2009; 160:115-20. [PMID: 19852986 DOI: 10.1016/j.regpep.2009.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/15/2009] [Accepted: 10/10/2009] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Corticotropin-releasing hormone (CRH) is a central component of the local hypothalamic-pituitary-adrenal (HPA) axis, which has a functional equivalent in the skin. To determine whether CRH and its receptor, CRH-R1, modulate the expression of vascular endothelial growth factor (VEGF), which is overexpressed in psoriatic epidermis and plays a causal role in the pathogenesis of psoriasis, we investigated the effect of CRH on the expression of VEGF in a human keratinocyte cell line (HaCaT) and whether this effect is via the mitogen-activated protein kinase (MAPK) signal transduction pathways. METHODS Real-time RT-PCR, ELISA assay and western blot were used in the present study to investigate the expression of VEGF in CRH-treated HaCaT cells. RESULTS The mRNA and protein levels of VEGF in CRH-treated HaCaT cells were significantly attenuated. However, this downregulation was abrogated by pretreatment with antalarmin, SB203580 and SP600125; pretreatment with PD98059 did not attenuate the effects of CRH on the expression of VEGF. In addition, CRH treatment induced rapid phosphorylation of p38 MAPK and JNK1/2, and antalarmin, SB203580 and SP600125 inhibited CRH-induced phosphorylation of p38 MAPK and JNK1/2. CONCLUSIONS CRH might downregulate the expression of VEGF through the CRH-R1 and MAPK (p38 MAPK and JNK1/2) signaling pathways in human HaCaT cells.
Collapse
Affiliation(s)
- Chun-Lei Zhou
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | | | | | | | | |
Collapse
|
16
|
Cohen SB, Cheng TT, Chindalore V, Damjanov N, Burgos-Vargas R, Delora P, Zimany K, Travers H, Caulfield JP. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 60:335-44. [PMID: 19180516 DOI: 10.1002/art.24266] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the efficacy and safety of pamapimod (a selective inhibitor of the alpha-isoform of p38 MAP kinase) as monotherapy in comparison with methotrexate (MTX) treatment in adult patients with active rheumatoid arthritis (RA). METHODS Patients were randomly assigned to 1 of 4 treatment groups and received 12 weeks of double-blind treatment. One group received MTX (7.5 mg/week with planned escalation to 20 mg/week), and 3 groups received pamapimod (50, 150, or 300 mg) once daily. The primary efficacy end point was the proportion of patients meeting the American College of Rheumatology 20% improvement criteria (achieving an ACR20 response) at 12 weeks. Secondary end points included ACR50 and ACR70 responses, change from baseline in the Disease Activity Score in 28 joints (DAS28), categorical analyses of DAS28/European League Against Rheumatism response, and change from baseline in each parameter of the ACR core set of measures. Safety monitoring included recording of adverse events (AEs), laboratory testing, immunology assessments, administration of electrocardiograms, and assessment of vital signs. RESULTS Patients assigned to receive MTX and pamapimod had similar demographics and baseline characteristics. At week 12, fewer patients taking pamapimod had an ACR20 response (23%, 18%, and 31% in the 50-, 150-, and 300-mg groups, respectively) compared with patients taking MTX (45%). Secondary efficacy end points showed a similar pattern. AEs were typically characterized as mild and included infections, skin disorders, and dizziness. Pamapimod was generally well tolerated, but the 300-mg dose appeared to be more toxic than either the 2 lower doses or MTX. CONCLUSION The present results showed that pamapimod was not as effective as MTX in the treatment of active RA.
Collapse
|
17
|
Gazel A, Nijhawan RI, Walsh R, Blumenberg M. Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes. J Cell Physiol 2008; 215:292-308. [PMID: 18247374 DOI: 10.1002/jcp.21394] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal keratinocytes respond to extracellular influences by activating cytoplasmic signal transduction pathways that change gene expression. Using pathway-specific transcriptional profiling, we identified the genes regulated by two such pathways, p38 and ERK. These pathways are at the fulcrum of epidermal differentiation, proliferative and inflammatory skin diseases. We used SB203580 and PD98059 as specific inhibitors and Affymetrix Hu133Av2 microarrays, to identify the genes regulated after 1, 4, 24, and 48 h and compared them to genes regulated by JNK. Unexpectedly, inhibition of MAPK pathways is compensated by activation of the NFkappaB pathway and suppression of the DUSP enzymes. Both pathways promote epidermal differentiation; however, there is a surprising disconnect between the expression of steroid synthesis enzymes and differentiation markers. The p38 pathway induces the expression of extracellular matrix and proliferation-associated genes, while suppressing microtubule-associated genes. The ERK pathway induces nuclear envelope and mRNA splicing proteins, while suppressing steroid synthesis and mitochondrial energy production enzymes. Transcription factors SRY, c-FOS, and N-Myc are the principal targets of the p38 pathway, Elk-1 SAP1 and HLH2 of ERK, while FREAC-4, ARNT and USF are shared. The results suggest a list of targets potentially useful in therapeutic interventions in cutaneous diseases and wound healing.
Collapse
Affiliation(s)
- Alix Gazel
- Department of Dermatology, The Cancer Institute, NYU School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
18
|
Törmä H, Geijer S, Gester T, Alpholm K, Berne B, Lindberg M. Variations in the mRNA expression of inflammatory mediators, markers of differentiation and lipid-metabolizing enzymes caused by sodium lauryl sulphate in cultured human keratinocytes. Toxicol In Vitro 2006; 20:472-9. [PMID: 16274956 DOI: 10.1016/j.tiv.2005.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 09/20/2005] [Accepted: 09/26/2005] [Indexed: 11/29/2022]
Abstract
Detergents are well known irritants. Effects of the detergent sodium lauryl sulphate (SLS) on cell toxicity using the XTT assay and mRNA expression of inflammatory mediators, markers of keratinocyte differentiation and enzymes synthesizing barrier lipids using real-time PCR were studied in cultured differentiated keratinocytes. After exposure for 24 h to SLS concentrations at 0.002% or above, toxic effects were observed. When a lower SLS concentration (0.00075%) was used the mRNA expression of inflammatory mediators peaked around 4-8 h. The expression of enzymes involved in the synthesis of cholesterol, fatty acids and ceramides and markers of keratinocyte differentiation also increased but after 24 h. In cells exposed to 0.000125-0.0015% SLS, a concentration-dependent induction of the expression of inflammatory mediators was found after 4 h. Similar changes were found after 24 h for involucrin and enzymes involved in ceramide synthesis. The mRNA expression of HMG-CoA synthase and reductase, long-chain acyl-CoA synthase and transglutaminase also peaked after 24 h, but maximal induction was observed already at 0.00075% SLS. In conclusion, SLS induces an inflammatory response in keratinocytes and alters the mRNA expression of important barrier lipid enzymes and markers of keratinocyte differentiation, of possible importance for the irritant properties of SLS.
Collapse
Affiliation(s)
- Hans Törmä
- Department of Medical Sciences, Uppsala University, Dermatology and Venereology, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
Pastore S, Mascia F, Mariotti F, Dattilo C, Mariani V, Girolomoni G. ERK1/2 regulates epidermal chemokine expression and skin inflammation. THE JOURNAL OF IMMUNOLOGY 2005; 174:5047-56. [PMID: 15814736 DOI: 10.4049/jimmunol.174.8.5047] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Resident cell populations of the skin contribute to the inflammatory response by producing an array of chemokines, which attract leukocytes from the circulation. TNF-alpha is a major inducer of proinflammatory mediators in keratinocytes. We have recently observed that epidermal growth factor receptor (EGFR) signaling affects TNF-alpha-driven chemokine expression in epidermal keratinocytes, and its functional impairment increases the levels of crucial chemoattractants such as CCL2/MCP-1, CCL5/RANTES, and CXCL10/IFN-gamma-inducible protein-10. In this study, we report evidence that EGFR-dependent ERK1/2 activity is implicated in this mechanism. Abrogation of ERK1/2 activity with specific inhibitors increased chemokine expression in keratinocytes by enhancing mRNA stabilization. In mouse models, inflammatory response to irritants and T cell-mediated contact hypersensitivity were both aggravated when elicited in a skin area previously treated with an EGFR or a MAPK kinase 1/2 inhibitor. In contrast, impairment of p38alpha beta MAPK phosphorylation markedly attenuated these responses. Our data indicate that EGFR-dependent ERK1/2 activity in keratinocytes takes part to a homeostatic mechanism regulating inflammatory responses, and emphasize the distinct role of MAPKs as potential targets for manipulating inflammation in the skin.
Collapse
Affiliation(s)
- Saveria Pastore
- Laboratory of Immunology, Istituto Dermopatico dell'Immacolata, Instituto di Ricovero e Cura a Carattere Scientifico, Roma, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Poumay Y, Dupont F, Marcoux S, Leclercq-Smekens M, Hérin M, Coquette A. A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies. Arch Dermatol Res 2004; 296:203-11. [PMID: 15349789 DOI: 10.1007/s00403-004-0507-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 07/23/2004] [Accepted: 08/09/2004] [Indexed: 11/27/2022]
Abstract
The preparation of a reconstructed human epidermis is described with examples of its utilization in in vitro studies. The model was obtained by culturing normal human keratinocytes at high cell density for 14 days in serum-free and high calcium (1.5 m M) medium on an inert polycarbonate filter at the air-liquid interface. These stratified cultures showed histological features similar to those observed in vivo in the epidermis: a proliferating basal layer and differentiating spinous, granular, and cornified layers. Electron microscopy illustrated lamellar bodies, junctions and keratohyalin granules. Immunofluorescent localization of epidermal markers (keratins 14 and 10, involucrin and filaggrin) revealed typical differentiation. This in vitro reconstructed tissue was used in studies of toxic effects of chemicals. The modelled tissue showed progressive cytotoxicity of a skin irritant (benzalkonium chloride) and a sensitizer (dinitrochlorobenzene) as assessed by MTT assay. Moreover, differential release of interleukin-1alpha and interleukin-8 were measured after 20 h of incubation allowing the irritant to be distinguished from the sensitizer. Permeation studies indicated efficient barrier function of the reconstructed epidermis, as well as metabolizing properties towards hormones. This model can be custom-made and is potentially useful for studies involving keratinocytes in the epidermis, in basic science, dermatology or toxicology.
Collapse
Affiliation(s)
- Y Poumay
- Département Histologie-Embryologie, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | |
Collapse
|