1
|
Azambuja M, Nogaroto V, Moreira-Filho O, Vicari MR. U2 and U4 snDNA Comparative Chromosomal Mapping in the Neotropical Fish Genera Apareiodon and Parodon (Characiformes: Parodontidae). Zebrafish 2023; 20:221-228. [PMID: 37797225 DOI: 10.1089/zeb.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Small nuclear DNA (snDNA) are valuable cytogenetic markers for comparative studies in chromosome evolution because different distribution patterns were found among species. Parodontidae, a Neotropical fish family, is known to have female heterogametic sex chromosome systems in some species. The U2 and U4 snDNA sites have been found to be involved in Z and W chromosome differentiation in Apareiodon sp., Apareiodon affinis, and Parodon hilarii. However, few studies have evaluated snDNA sites as propulsors of chromosome diversification among closely related fish species. In this study, we investigated the distribution of U2 and U4 snDNA clusters in the chromosomes of 10 populations/species belonging to Apareiodon and Parodon, aiming to identify chromosomal homeologies or diversification. In situ localization data revealed a submetacentric pair carrying the U2 snDNA site among the populations/species analyzed. Furthermore, all studied species demonstrated homeology in the location of U4 snDNA cluster in the proximal region of metacentric pair 1, besides an additional signal showing up with a divergence in Apareiodon. Comparative chromosomal mapping of U4 snDNA also helped to reinforce the proposal of the ZZ/ZW1W2 sex chromosome system origin in an A. affinis population. According to cytogenetic data, the study corroborates the diversification in Parodontidae paired species with uncertain taxonomy.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
2
|
Azambuja M, Marcondes DS, Nogaroto V, Moreira-Filho O, Vicari MR. Population structuration and chromosomal features homogeneity in Parodon nasus (Characiformes: Parodontidae): A comparison between Lower and Upper Paraná River representatives. NEOTROPICAL ICHTHYOLOGY 2022. [DOI: 10.1590/1982-0224-2021-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The ichthyofauna of the La Plata hydrographic basin is divided into Upper and Lower Paraná River systems due to the geographic isolation of the Sete Quedas waterfalls, currently flooded by the lake of the Itaipu dam. In Parodontidae, pairs of species, or groups of cryptic species were described between these systems. Although genetic isolation and speciation have already been proposed in other species in the group, Parodon nasus has been maintained as a valid species and distributed throughout the La Plata river basin. In this perspective, specimens of P. nasus from four different sampling sites in the Upper and Lower Paraná River systems were compared regarding the karyotypes, molecular analyzes of population biology and species delimitation to investigate their genetic and population isolation in the La Plata river basin. Despite a geographic barrier and the immense geographic distance separating the specimens sampled from the Lower Paraná River system compared to those from the Upper Paraná River, the data obtained showed P. nasus as a unique taxon. Thus, unlike other species of Parodontidae that showed diversification when comparing the groups residing in the Lower versus Upper Paraná River, P. nasus showed a population structure and a karyotypic homogeneity.
Collapse
|
3
|
Nirchio M, Masache MC, Paim FG, Cioffi MDB, Moreira Filho O, Barriga R, Oliveira C, Rossi AR. Chromosome analysis in Saccodon wagneri (Characiformes) and insights into the karyotype evolution of Parodontidae. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Parodontidae is a relatively small group of Neotropical characiform fishes consisting of three genera (Apareiodon, Parodon, and Saccodon) with 32 valid species. A vast cytogenetic literature is available on Apareiodon and Parodon, but to date, there is no cytogenetic data about Saccodon, a genus that contains only three species with a trans-Andean distribution. In the present study the karyotype of S. wagneri was described, based on both conventional (Giemsa staining, Ag-NOR, C-bands) and molecular (repetitive DNA mapping by fluorescent in situ hybridization) methods. A diploid chromosome number of 2n = 54 was observed in both sexes, and the presence of heteromorphic sex chromosomes of the ZZ/ZW type was detected. The W chromosome has a terminal heterochromatin band that occupies approximately half of the long arm, being this band approximately half the size of the Z chromosome. The FISH assay showed a synteny of the 18S-rDNA and 5S-rDNA genes in the chromosome pair 14, and the absence of interstitial telomeric sites. Our data reinforce the hypothesis of a conservative karyotype structure in Parodontidae and suggest an ancient origin of the sex chromosomes in the fishes of this family.
Collapse
Affiliation(s)
- Mauro Nirchio
- Universidad Técnica de Machala, Ecuador; Universidad de Oriente, Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Recent Apareiodon species evolutionary divergence (Characiformes: Parodontidae) evidenced by chromosomal and molecular inference. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Furman BLS, Metzger DCH, Darolti I, Wright AE, Sandkam BA, Almeida P, Shu JJ, Mank JE. Sex Chromosome Evolution: So Many Exceptions to the Rules. Genome Biol Evol 2020; 12:750-763. [PMID: 32315410 PMCID: PMC7268786 DOI: 10.1093/gbe/evaa081] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 01/10/2023] Open
Abstract
Genomic analysis of many nonmodel species has uncovered an incredible diversity of sex chromosome systems, making it possible to empirically test the rich body of evolutionary theory that describes each stage of sex chromosome evolution. Classic theory predicts that sex chromosomes originate from a pair of homologous autosomes and recombination between them is suppressed via inversions to resolve sexual conflict. The resulting degradation of the Y chromosome gene content creates the need for dosage compensation in the heterogametic sex. Sex chromosome theory also implies a linear process, starting from sex chromosome origin and progressing to heteromorphism. Despite many convergent genomic patterns exhibited by independently evolved sex chromosome systems, and many case studies supporting these theoretical predictions, emerging data provide numerous interesting exceptions to these long-standing theories, and suggest that the remarkable diversity of sex chromosomes is matched by a similar diversity in their evolution. For example, it is clear that sex chromosome pairs are not always derived from homologous autosomes. In addition, both the cause and the mechanism of recombination suppression between sex chromosome pairs remain unclear, and it may be that the spread of recombination suppression is a more gradual process than previously thought. It is also clear that dosage compensation can be achieved in many ways, and displays a range of efficacy in different systems. Finally, the remarkable turnover of sex chromosomes in many systems, as well as variation in the rate of sex chromosome divergence, suggest that assumptions about the inevitable linearity of sex chromosome evolution are not always empirically supported, and the drivers of the birth-death cycle of sex chromosome evolution remain to be elucidated. Here, we concentrate on how the diversity in sex chromosomes across taxa highlights an equal diversity in each stage of sex chromosome evolution.
Collapse
Affiliation(s)
- Benjamin L S Furman
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C H Metzger
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iulia Darolti
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Benjamin A Sandkam
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Jacelyn J Shu
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
6
|
Santos EOD, Deon GA, Almeida RBD, Oliveira EAD, Nogaroto V, Silva HPD, Pavanelli CS, Cestari MM, Bertollo LAC, Moreira-Filho O, Vicari MR. Cytogenetics and DNA barcode reveal an undescribed Apareiodon species (Characiformes: Parodontidae). Genet Mol Biol 2019; 42:365-373. [PMID: 31259363 PMCID: PMC6726146 DOI: 10.1590/1678-4685-gmb-2018-0066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
Parodontidae is a small group of fish and some species are particularly difficult
to identify due to the lack of sufficiently consistent morphological traits.
Cytogenetically, the species possess 2n = 54 chromosomes and are either
sex-homomorphic or sex-heteromorphic (regarding its chromosomes). We evaluated
data on color, tooth morphology, cytogenetics, and mitochondrial markers (COI)
in Apareiodon specimens from the Aripuanã River (Amazon basin)
and the results were compared to other congeneric taxa. Morphological results
show an overlap of body color and tooth morphology to other known
Apareiodon. The cytogenetics data showed that the 2n = 54
chromosomes, 50 m/sm + 4 st and, a ZZ/ZW sex chromosome system in
Apareiodon sp. are common to other species of the genus.
However, the number and chromosomal localization of the 45S ribosomal and
pPh2004 satellite DNA sites, in addition to W chromosome
localization of the pPh2004 appear to be exclusive cytogenetic
features in Apareiodon sp. Our phylogenetic tree revealed
well-supported clades and confirmed, by barcode species delimitation analysis, a
new Molecular Operational Taxonomic Unit (MOTU) for Apareiodon
sp. (Aripuanã River). As a whole, the above features support the occurrence of a
new species of the Apareiodon, thus far unknown for the
Parodontidae.
Collapse
Affiliation(s)
- Emanoel Oliveira Dos Santos
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Geize Aparecida Deon
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Rafael Bonfim de Almeida
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Hugmar Pains da Silva
- Laboratório de Citogenética e Genética Animal, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Carla Simone Pavanelli
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Marta Margarete Cestari
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, SP, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil.,Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| |
Collapse
|
7
|
do Nascimento VD, Coelho KA, Nogaroto V, de Almeida RB, Ziemniczak K, Centofante L, Pavanelli CS, Torres RA, Moreira-Filho O, Vicari MR. Do multiple karyomorphs and population genetics of freshwater darter characines (Apareiodon affinis) indicate chromosomal speciation? ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Amorim KDJ, Cioffi MDB, Bertollo LAC, Soares RX, de Souza AS, da Costa GWWF, Molina WF. Co-located 18S/5S rDNA arrays: an ancient and unusual chromosomal trait in Julidini species (Labridae, Perciformes). COMPARATIVE CYTOGENETICS 2016; 10:555-570. [PMID: 28123678 PMCID: PMC5240509 DOI: 10.3897/compcytogen.v10i4.10227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Wrasses (Labridae) are extremely diversified marine fishes, whose species exhibit complex interactions with the reef environment. They are widely distributed in the Indian, Pacific and Atlantic oceans. Their species have displayed a number of karyotypic divergent processes, including chromosomal regions with complex structural organization. Current cytogenetic information for this family is phylogenetically and geographically limited and mainly based on conventional cytogenetic techniques. Here, the distribution patterns of heterochromatin, GC-specific chromosome regions and Ag-NORs, and the organization of 18S and 5S rDNA sites of the Atlantic species Thalassoma noronhanum (Boulenger, 1890), Halichoeres poeyi (Steindachner, 1867), Halichoeres radiatus (Linnaeus, 1758), Halichoeres brasiliensis (Bloch, 1791) and Halichoeres penrosei Starks, 1913, belonging to the tribe Julidini were analyzed. All the species exhibited 2n=48 chromosomes with variation in the number of chromosome arms among genera. Thalassoma noronhanum has 2m+46a, while species of the genus Halichoeres Rüppell, 1835 share karyotypes with 48 acrocentric chromosomes. The Halichoeres species exhibit differences in the heterochromatin distribution patterns and in the number and distribution of 18S and 5S rDNA sites. The occurrence of 18S/5S rDNA syntenic arrangements in all the species indicates a functionally stable and adaptive genomic organization. The phylogenetic sharing of this rDNA organization highlights a marked and unusual chromosomal singularity inside the family Labridae.
Collapse
Affiliation(s)
- Karlla Danielle Jorge Amorim
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235,13565-905, São Carlos, SP, Brasil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235,13565-905, São Carlos, SP, Brasil
| | - Rodrigo Xavier Soares
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Allyson Santos de Souza
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Gideão Wagner Werneck Felix da Costa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| |
Collapse
|
9
|
Piscor D, Parise-Maltempi PP. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes. Genome 2016; 59:167-72. [DOI: 10.1139/gen-2015-0112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.
Collapse
Affiliation(s)
- Diovani Piscor
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, ZIP: 13506-900, Rio Claro, SP, Brazil
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, ZIP: 13506-900, Rio Claro, SP, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, ZIP: 13506-900, Rio Claro, SP, Brazil
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, ZIP: 13506-900, Rio Claro, SP, Brazil
| |
Collapse
|
10
|
Traldi JB, Vicari MR, Martinez JDF, Blanco DR, Lui RL, Moreira-Filho O. Chromosome Analyses of Apareiodon argenteus and Apareiodon davisi (Characiformes, Parodontidae): An Extensive Chromosomal Polymorphism of 45S and 5S Ribosomal DNAs. Zebrafish 2016; 13:19-25. [DOI: 10.1089/zeb.2015.1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Josiane Baccarin Traldi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos-SP, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa-PR, Brazil
| | | | | | - Roberto Laridondo Lui
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel-PR, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos-SP, Brazil
| |
Collapse
|
11
|
Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 2015; 125:553-71. [DOI: 10.1007/s00412-015-0569-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/26/2022]
|
12
|
de Oliveira EA, Bertollo LAC, Yano CF, Liehr T, Cioffi MDB. Comparative cytogenetics in the genus Hoplias (Characiformes, Erythrinidae) highlights contrasting karyotype evolution among congeneric species. Mol Cytogenet 2015; 8:56. [PMID: 26225139 PMCID: PMC4518567 DOI: 10.1186/s13039-015-0161-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Erythrinidae fish family contains three genera, Hoplias, Erythrinus and Hoplerythrinus widely distributed in Neotropical region. Remarkably, species from this family are characterized by an extensive karyotype diversity, with 2n ranging from 39 to 54 chromosomes and the occurrence of single and/or multiple sex chromosome systems in some species. However, inside the Hoplias genus, while H. malabaricus was subject of many studies, the cytogenetics of other congeneric species remains poorly explored. In this study, we have investigated chromosomal characteristics of four Hoplias species, namely H. lacerdae, H. brasiliensis, H. intermedius and H. aimara. We used conventional staining techniques (C-banding, Ag-impregnation and CMA3 -fluorescence) as well as fluorescence in situ hybridization (FISH) with minor and major rDNA and microsatellite DNAs as probes in order to analyze the karyotype evolution within the genus. RESULTS All species showed invariably 2n = 50 chromosomes and practically identical karyotypes dominated only by meta- and submetacentric chromosomes, the absence of heteromorphic sex chromosomes, similar pattern of C-positive heterochromatin blocks and homologous Ag-NOR-bearing pairs. The cytogenetic mapping of five repetitive DNA sequences revealed some particular interspecific differences between them. However, the examined chromosomal characteristics indicate that their speciation was not associated with major changes in their karyotypes. CONCLUSION Such conserved karyotypes contrasts with the extensive karyotype diversity that has been observed in other Erythrinidae species, particularly in the congeneric species H. malabaricus. Nevertheless, what forces drive such particularly different modes of karyotype evolution among closely related species? Different life styles, population structure and inner chromosomal characteristics related to similar cases in other vertebrate groups can also account for the contrasting modes of karyotype evolution in Hoplias genus.
Collapse
Affiliation(s)
- Ezequiel Aguiar de Oliveira
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
- />SEDUC-MT, Cuiabá, MT Brazil
| | | | - Cassia Fernanda Yano
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
| | - Thomas Liehr
- />Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Marcelo de Bello Cioffi
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
| |
Collapse
|
13
|
Ziemniczak K, Traldi JB, Nogaroto V, Almeida MC, Artoni RF, Moreira-Filho O, Vicari MR. In situ Localization of (GATA)n and (TTAGGG)n Repeated DNAs and W Sex Chromosome Differentiation in Parodontidae (Actinopterygii: Characiformes). Cytogenet Genome Res 2015; 144:325-32. [DOI: 10.1159/000370297] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
|
14
|
Sex determination in Antarctic notothenioid fish: chromosomal clues and evolutionary hypotheses. Polar Biol 2014. [DOI: 10.1007/s00300-014-1601-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Bellafronte E, Mariguela TC, Pereira LHG, Oliveira C, Moreira-Filho O. DNA barcode of Parodontidae species from the La Plata river basin - applying new data to clarify taxonomic problems. NEOTROPICAL ICHTHYOLOGY 2013. [DOI: 10.1590/s1679-62252013000300003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past years, DNA barcoding has emerged as a quick, accurate and efficient tool to identify species. Considering the difficulty in identifying some Parodontidae species from the La Plata basin and the absence of molecular data for the group, we aimed to test the effectiveness of DNA barcoding and discuss the importance of using different approaches to solve taxonomic problems. Eight species were analyzed with partial sequences of Cytochrome c oxidase I. The mean intraspecific K2P genetic distance was 0.04% compared to 4.2% for mean interspecific K2P genetic distance. The analyses of distance showed two pairs of species with K2P genetic divergence lower than 2%, but enough to separate these species. Apareiodon sp. and A. ibitiensis, considered as the same species by some authors, showed 4.2% genetic divergence, reinforcing their are different species. Samples of A. affinis from the Uruguay and Paraguay rivers presented 0.3% genetic divergence, indicating a close relationship between them. However, these samples diverged 6.1% from the samples of the upper Paraná River, indicating that the latter represents a potentially new species. The results showed the effectiveness of the DNA barcoding method in identifying the analyzed species, which, together with the morphological and cytogenetic available data, help species identification.
Collapse
|
16
|
Bellafronte E, Schemberger MO, Artoni RF, Filho OM, Vicari MR. Sex chromosome system ZZ/ZW in Apareiodon hasemani Eigenmann, 1916 (Characiformes, Parodontidae) and a derived chromosomal region. Genet Mol Biol 2012; 35:770-6. [PMID: 23271937 PMCID: PMC3526084 DOI: 10.1590/s1415-47572012005000077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/05/2012] [Indexed: 11/23/2022] Open
Abstract
Parodontidae fish show few morphological characteristics for the identification of their representatives and chromosomal analyses have provided reliable features for determining the interrelationships in this family. In this study, the chromosomes of Apareiodon hasemani from the São Francisco River basin, Brazil, were analyzed and showed a karyotype with 2n = 54 meta/submetacentric chromosomes, and a ZZ/ZW sex chromosome system. The study revealed active NORs located on pair 11 and additional 18S rDNA sites on pairs 7 and 22. The 5S rDNA locus was found in pair 14. It showed a pericentric inversion regarding the ancestral condition. The satellite DNA pPh2004 was absent in the chromosomes of A. hasemani, a shared condition with most members of Apareiodon. The WAp probe was able to detect the amplification region of the W chromosome, corroborating the common origin of the system within Parodontidae. These chromosomal data corroborate an origin for the ZW system of Parodontidae and aid in the understanding of the differentiation of sex chromosome systems in Neotropical fishes.
Collapse
Affiliation(s)
- Elisangela Bellafronte
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
17
|
Lui RL, Blanco DR, Moreira-Filho O, Margarido VP. Propidium iodide for making heterochromatin more evident in the C-banding technique. Biotech Histochem 2012; 87:433-8. [PMID: 22747174 DOI: 10.3109/10520295.2012.696700] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The detection of regions of heterochromatin has been the subject of intense investigation. We investigated an adaptation of the commonly used technique by replacing the nonfluorescent dye, Giemsa, by a fluorescent one, propidium iodide. This adaptation produces greater contrast of the heterochromatic bands in metaphase chromosomes and can be especially valuable when the organisms studied possess heterochromatin that is pale and difficult to visualize. We discuss the interactions of these two dyes with DNA and the excitation of the fluorescent dye when irradiated with ultraviolet light.
Collapse
Affiliation(s)
- R L Lui
- Department of Genetics and Evolution, Federal University of São Carlos, Highway Washington Luís (SP 310) Km 235, CEP: 13565-905, São Carlos, Brazil
| | | | | | | |
Collapse
|
18
|
Cioffi MB, Moreira-Filho O, Almeida-Toledo LF, Bertollo LAC. The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. JOURNAL OF FISH BIOLOGY 2012; 80:2125-2139. [PMID: 22551173 DOI: 10.1111/j.1095-8649.2012.03272.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During the evolutionary process of the sex chromosomes, a general principle that arises is that cessation or a partial restriction of recombination between the sex chromosome pair is necessary. Data from phylogenetically distinct organisms reveal that this phenomenon is frequently associated with the accumulation of heterochromatin in the sex chromosomes. Fish species emerge as excellent models to study this phenomenon because they have much younger sex chromosomes compared to higher vertebrates and many other organisms making it possible to follow their steps of differentiation. In several Neotropical fish species, the heterochromatinization, accompanied by amplification of tandem repeats, represents an important step in the morphological differentiation of simple sex chromosome systems, especially in the ZZ/ZW sex systems. In contrast, multiple sex chromosome systems have no additional increase of heterochromatin in the chromosomes. Thus, the initial stage of differentiation of the multiple sex chromosome systems seems to be associated with proper chromosomal rearrangements, whereas the simple sex chromosome systems have an accumulation of heterochromatin. In this review, attention has been drawn to this contrasting role of heterochromatin in the differentiation of simple and multiple sex chromosomes of Neotropical fishes, highlighting their surprising evolutionary dynamism.
Collapse
Affiliation(s)
- M B Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brazil.
| | | | | | | |
Collapse
|
19
|
Schemberger MO, Bellafronte E, Nogaroto V, Almeida MC, Schühli GS, Artoni RF, Moreira-Filho O, Vicari MR. Differentiation of repetitive DNA sites and sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes). Genetica 2012; 139:1499-508. [DOI: 10.1007/s10709-012-9649-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 04/09/2012] [Indexed: 11/24/2022]
|
20
|
Pansonato-Alves JC, Vicari MR, Oliveira C, Foresti F. Chromosomal diversification in populations of Characidium cf. gomesi (Teleostei, Crenuchidae). JOURNAL OF FISH BIOLOGY 2011; 78:183-194. [PMID: 21235554 DOI: 10.1111/j.1095-8649.2010.02847.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Comparative cytogenetic studies carried out in two populations of Characidium cf. gomesi from Botucatu region, SP, Brazil, showed a similar karyotypic structure in a diploid number of 50 chromosomes, 32 metacentric and 18 submetacentric chromosomes for males and 31 metacentric and 19 submetacentric chromosomes for females as well as a ZZ-ZW sex chromosome system. Differences between both populations, however, were found in relation to the occurrence of B chromosomes and the distribution of 18S and 5S ribosomal DNA (rDNA) sites. Characidium cf. gomesi from the Alambari Stream, a component of the Tietê River basin, revealed 18S rDNA on Z and W chromosomes, while this gene was located on autosomes in the sample from the Paranapanema River basin. The 5S rDNA sites were observed in a single chromosomal pair (number 25) in the populations from Paranapanema and in two pairs in the specimens from Tietê (numbers 20 and 25). Besides that, in the sample from Paranapanema, both inter and intra-individual variations were found due to the occurrence of up to four heterochromatic supernumerary chromosomes in the cells. The life mode of this fish, restricted to headwaters and subjected to frequent breakdown into sub-populations, may have contributed to the fixation of such chromosomal differences. The karyotypic similarities found in the analysed populations, however, suggest that all are descended from the same ancestor group whereas their differences indicate that they are already existing in reproductively isolated populations.
Collapse
Affiliation(s)
- J C Pansonato-Alves
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP, Brazil.
| | | | | | | |
Collapse
|
21
|
Vicari MR, Nogaroto V, Noleto RB, Cestari MM, Cioffi MB, Almeida MC, Moreira-Filho O, Bertollo LAC, Artoni RF. Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives. JOURNAL OF FISH BIOLOGY 2010; 76:1094-116. [PMID: 20409164 DOI: 10.1111/j.1095-8649.2010.02564.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Constitutive heterochromatin represents a substantial portion of the eukaryote genome, and it is mainly composed of tandemly repeated DNA sequences, such as satellite DNAs, which are also enriched by other dispersed repeated elements, including transposons. Studies on the organization, structure, composition and in situ localization of satellite DNAs have led to consistent advances in the understanding of the genome evolution of species, with a particular focus on heterochromatic domains, the diversification of heteromorphic sex chromosomes and the origin and maintenance of B chromosomes. Satellite DNAs can be chromosome specific or species specific, or they can characterize different species from a genus, family or even representatives of a given order. In some cases, the presence of these repeated elements in members of a single clade has enabled inferences of a phylogenetic nature. Genomic DNA restriction, using specific enzymes, is the most frequently used method for isolating satellite DNAs. Recent methods such as C(0)t-1 DNA and chromosome microdissection, however, have proven to be efficient alternatives for the study of this class of DNA. Neotropical ichthyofauna is extremely rich and diverse enabling multiple approaches with regard to the differentiation and evolution of the genome. Genome components of some species and genera have been isolated, mapped and correlated with possible functions and structures of the chromosomes. The 5SHindIII-DNA satellite DNA, which is specific to Hoplias malabaricus of the Erythrinidae family, has an exclusively centromeric location. The As51 satellite DNA, which is closely correlated with the genome diversification of some species from the genus Astyanax, has also been used to infer relationships between species. In the Prochilodontidae family, two repetitive DNA sequences were mapped on the chromosomes, and the SATH 1 satellite DNA is associated with the origin of heterochromatic B chromosomes in Prochilodus lineatus. Among species of the genus Characidium and the Parodontidae family, amplifications of satellite DNAs have demonstrated that these sequences are related to the differentiation of heteromorphic sex chromosomes. The possible elimination of satellite DNA units could explain the genome compaction that occurs among some species of Neotropical Tetraodontiformes. These topics are discussed in the present review, showing the importance of satellite DNA analysis in the differentiation and karyotype evolution of Actinopterygii.
Collapse
Affiliation(s)
- M R Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|