1
|
Jia Z, Feng J, Dooley H, Zou J, Wang J. The first crystal structure of CD8αα from a cartilaginous fish. Front Immunol 2023; 14:1156219. [PMID: 37122697 PMCID: PMC10140343 DOI: 10.3389/fimmu.2023.1156219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Cartilaginous fishes are the most evolutionary-distant vertebrates from mammals and possess an immunoglobulin (Ig)- and T cell-mediated adaptive immunity. CD8 is the hallmark receptor of cytotoxic T cells and is required for the formation of T cell receptor-major histocompatibility complex (TCR-MHC) class I complexes. Methods RACE PCR was used to obtain gene sequences. Direct dilution was applied for the refolding of denatured recombinant CD8 protein. Hanging-drop vapor diffusion method was performed for protein crystallization. Results In this study, CD8α and CD8β orthologues (termed ScCD8α and ScCD8β) were identified in small-spotted catshark (Scyliorhinus canicula). Both ScCD8α and ScCD8β possess an extracellular immunoglobulin superfamily (IgSF) V domain as in previously identified CD8 proteins. The genes encoding CD8α and CD8β are tandemly linked in the genomes of all jawed vertebrates studied, suggesting that they were duplicated from a common ancestral gene before the divergence of cartilaginous fishes and other vertebrates. We determined the crystal structure of the ScCD8α ectodomain homodimer at a resolution of 1.35 Å and show that it exhibits the typical topological structure of CD8α from endotherms. As in mammals, the homodimer formation of ScCD8αα relies upon interactions within a hydrophobic core although this differs in position and amino acid composition. Importantly, ScCD8αα shares the canonical cavity required for interaction with peptide-loaded MHC I in mammals. Furthermore, it was found that ScCD8α can co-immunoprecipitate with ScCD8β, indicating that it can form both homodimeric and heterodimeric complexes. Conclusion Our results expand the current knowledge of vertebrate CD8 dimerization and the interaction between CD8α with p/MHC I from an evolutionary perspective.
Collapse
Affiliation(s)
- Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Marine and Environmental Technology, Baltimore, MD, United States
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Junya Wang,
| |
Collapse
|
2
|
Jiang X, Xing J, Tang X, Sheng X, Chi H, Zhan W. CD4-1 and CD8α T lymphocytes subsets in spotted sea bass (Lateolabrax maculatus) and comparison on antigenicity of T lymphocytes subsets in other three marine fish species. FISH & SHELLFISH IMMUNOLOGY 2022; 131:487-497. [PMID: 36210001 DOI: 10.1016/j.fsi.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
CD4 and CD8 molecules play an important role in the identification of T lymphocytes, and diverse among fish species. In this study, CD4-1 and CD8α gene of spotted sea bass (Lateolabrax maculatus) were cloned, polyclonal antibodies against CD4-1 (CD4-1 pAbs) and CD8α (CD8α pAbs) were produced, respectively. And the variations in CD4-1+ and CD8α+ T-lymphocytes in spotted sea bass and the cross-reactivity with leukocytes in pearl gentian grouper (Epinephelus fuscoguttatus x E. lanceolatus), schlegel's black rockfish (Sebastes schlegelii) and flounder (Paralichthys olivaceus) were investigated using CD4-1 pAbs and CD8α pAbs. The results showed that CD4-1 molecule ORF was 1413 bp and CD8α was 690 bp, both molecules are transmembrane glycoproteins with high amino acid homology to grouper. The CD4-1 pAbs specifically recognized both the CD4-1 recombinant and natural proteins, as does the CD8α pAbs to CD8α molecule, and no cross-reactivity between the two antibodies. CD4-1+ and CD8α+ T lymphocytes were detected in peripheral blood, spleen and head kidney leukocytes in spotted sea bass. In cross-reactivity assay with other three fish, CD4-1 pAbs could recognize the lymphocytes from pearl gentian grouper and schlegel's black rockfish, both with highest proportions in the spleen leukocytes, 5.3 ± 0.4% and 2.6 ± 0.3%, respectively, and CD8α pAbs could only recognize the lymphocytes in pearl gentian grouper, and no cross-reactivities to lymphocytes of flounder. These data suggested that the CD4-1 and CD8α molecules varied by fish species in the genes features and antigenicity, which might result in the diversities of T lymphocytes subpopulations. This will be a key to elucidating the classification and evolution of T lymphocytes in fish.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
3
|
Qiu R, Sun YY, Guan CC, Kan YC, Yao LG. Characterization of TCR + and CD8 + head kidney leucocytes in Japanese flounder (Paralichthys olivaceus) with antisera against TCRα and CD8α. JOURNAL OF FISH BIOLOGY 2021; 99:345-353. [PMID: 33751560 DOI: 10.1111/jfb.14722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
T lymphocytes play an important role in cellular and adaptive immunity in vertebrates. The mechanisms of the fish immune system are little studied because of the lack of population-specific antibodies. This study examined the expression of two T lymphocyte markers, TCRα (PoTCRα) and CD8α (PoCD8α) in the Japanese flounder (Paralichthys olivaceus). The expression of PoTCRα and PoCD8α was mainly detected in immune/mucosal tissues. Recombinant PoTCRα and PoCD8α were expressed in pET32a and pET259, respectively. Then, rabbit anti-PoTCRα serum and rat anti-PoCD8α serum were prepared. Using serum, the characteristics of TCR+ and CD8+ head kidney leucocytes (HKLs) were investigated. The results of laser scanning confocal microscopy (LSCM) demonstrated that TCRα and CD8α were transmembrane proteins localized on the cell surface. The populations of CD8α- , CD8α+ , TCRα- , and TCRα+ were sorted by flow cytometry (FCM) and analysed using qRT-PCR. The results demonstrated that all TCRα+ /TCRα- or CD8α+ /CD8α- HKLs expressed IFN-γ. The CD4-1 and IgM transcripts were detected only in TCRα- and CD8α- cells. Furthermore, HKL mitogenesis was induced with concanavalin A (ConA) stimulation. Taken together, the results from LSCM and FCM analyses showed that mammalian and P. olivaceus TCR+ and CD8+ leucocytes share basic characteristics.
Collapse
Affiliation(s)
- Reng Qiu
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| | - Yuan Y Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Cui C Guan
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| | - Yun C Kan
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
- School of Life Sciences, Henan University, Kaifeng, 475000, China
| | - Lun G Yao
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
4
|
Barraza F, Montero R, Wong-Benito V, Valenzuela H, Godoy-Guzmán C, Guzmán F, Köllner B, Wang T, Secombes CJ, Maisey K, Imarai M. Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives. BIOLOGY 2020; 10:biology10010008. [PMID: 33375568 PMCID: PMC7824517 DOI: 10.3390/biology10010008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary The thymus is the immune organ producing T lymphocytes that are essential to create immunity after encountering pathogens or vaccination. This review summarizes the thymus localization and histological studies, cell composition, and function in teleost fishes. We also describe how seasonal changes, photoperiod, water temperature fluctuations, and hormones can affect thymus development in fish species. Overall, the information helps identify future studies needed to understand thymus function in fish species and the immune system’s evolutionary origins. Since fish are exposed to pathogens, especially under aquaculture conditions, knowledge about the fish thymus and T lymphocyte can also help improve fish farming protocols, considering intrinsic and environmental conditions that can contribute to achieving the best vaccine responsiveness for disease resistance. Abstract The thymus in vertebrates plays a critical role in producing functionally competent T-lymphocytes. Phylogenetically, the thymus emerges early during evolution in jawed cartilaginous fish, and it is usually a bilateral organ placed subcutaneously at the dorsal commissure of the operculum. In this review, we summarize the current understanding of the thymus localization, histology studies, cell composition, and function in teleost fishes. Furthermore, we consider environmental factors that affect thymus development, such as seasonal changes, photoperiod, water temperature fluctuations and hormones. Further analysis of the thymus cell distribution and function will help us understand how key stages for developing functional T cells occur in fish, and how thymus dynamics can be modulated by external factors like photoperiod. Overall, the information presented here helps identify the knowledge gaps and future steps needed for a better understanding of the immunobiology of fish thymus.
Collapse
Affiliation(s)
- Felipe Barraza
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Ruth Montero
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493 Greifswald, Insel Riems, Germany; (R.M.); (B.K.)
| | - Valentina Wong-Benito
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Héctor Valenzuela
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Carlos Godoy-Guzmán
- Center for Biomedical and Applied Research (CIBAP), School of Medicine, Faculty of Medical Sciences, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile;
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile;
| | - Bernd Köllner
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493 Greifswald, Insel Riems, Germany; (R.M.); (B.K.)
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (T.W.); (C.J.S.)
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (T.W.); (C.J.S.)
| | - Kevin Maisey
- Laboratory of Comparative Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile;
| | - Mónica Imarai
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
- Correspondence:
| |
Collapse
|
5
|
The Mucosal Immune System of Teleost Fish. BIOLOGY 2015; 4:525-39. [PMID: 26274978 PMCID: PMC4588148 DOI: 10.3390/biology4030525] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023]
Abstract
Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT(+) B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture.
Collapse
|
6
|
Song J, Liu H, Ma L, Ma L, Gao C, Zhang S. Molecular cloning, expression and functional characterization of interferon-γ-inducible lysosomal thiol reductase (GILT) gene from mandarin fish (Siniperca chuatsi). FISH & SHELLFISH IMMUNOLOGY 2014; 38:275-281. [PMID: 24698993 DOI: 10.1016/j.fsi.2014.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Interferon-γ-inducible lysosomal thiol reductase (GILT) plays a key role in the processing and presentation of MHC class II-restricted antigen (Ag) by catalyzing disulfide bond reduction, thus unfolding native protein Ag and facilitating subsequent cleavage by proteases. For this important function in the immune system, we cloned a GILT gene homologue from mandarin fish (designated mGILT), a kind of precious freshwater fish with high market value. Through reverse transcription PCR and rapid amplification of cDNA ends (RACE) strategies, we obtained the full-length cDNA of mGILT, which consists of 1008 bp with a 771 bp open reading frame, encoding a protein of 256 amino acids, with a putative molecular weight of 28.47 kDa. The deduced protein possesses the typical structural features of known GILT proteins, including an active-site motif, a GILT signature sequence, and 6 conserved cysteines. The result of real-time quantitative PCR showed that mGILT mRNA was expressed in a tissue-specific manner. In addition, the expression of mGILT mRNA was obviously up-regulated in splenocytes and kidney after induction with lipopolysaccharide (LPS). Recombinant mGILT fused with His6 tag was efficiently expressed in Escherichia coli BL21 (DE3) and purified using Ni-nitrilotriacetic acid resin. Further study revealed that mGILT exhibit thiol reductase activity on IgG substrate. These results suggest mGILT is highly likely to play a role in the immune responses in mandarin fish.
Collapse
Affiliation(s)
- Jinyun Song
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China
| | - Hongzhen Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China
| | - Lei Ma
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China
| | - Li Ma
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China
| | - Cuixiang Gao
- Medical Department, Yancheng Institute of Health Sciences, Yancheng 224005, China
| | - Shuangquan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China; Jiangsu Province Key Laboratory for Aquatic Crustacean Diseases, Life Sciences College, Nanjing Normal University, Nanjing 210046, China; Medical Department, Yancheng Institute of Health Sciences, Yancheng 224005, China.
| |
Collapse
|