1
|
Thomas CM, Saulnier DMA, Spinler JK, Hemarajata P, Gao C, Jones SE, Grimm A, Balderas MA, Burstein MD, Morra C, Roeth D, Kalkum M, Versalovic J. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. Microbiologyopen 2016; 5:802-818. [PMID: 27353144 PMCID: PMC5061717 DOI: 10.1002/mbo3.371] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/20/2016] [Accepted: 03/30/2016] [Indexed: 12/16/2022] Open
Abstract
Bacterial‐derived compounds from the intestinal microbiome modulate host mucosal immunity. Identification and mechanistic studies of these compounds provide insights into host–microbial mutualism. Specific Lactobacillus reuteri strains suppress production of the proinflammatory cytokine, tumor necrosis factor (TNF), and are protective in a mouse model of colitis. Human‐derived L. reuteri strain ATCC PTA 6475 suppresses intestinal inflammation and produces 5,10‐methenyltetrahydrofolic acid polyglutamates. Insertional mutagenesis identified the bifunctional dihydrofolate synthase/folylpolyglutamate synthase type 2 (folC2) gene as essential for 5,10‐methenyltetrahydrofolic acid polyglutamate biosynthesis, as well as for suppression of TNF production by activated human monocytes, and for the anti‐inflammatory effect of L. reuteri 6475 in a trinitrobenzene sulfonic acid‐induced mouse model of acute colitis. In contrast, folC encodes the enzyme responsible for folate polyglutamylation but does not impact TNF suppression by L. reuteri. Comparative transcriptomics between wild‐type and mutant L. reuteri strains revealed additional genes involved in immunomodulation, including previously identified hdc genes involved in histidine to histamine conversion. The folC2 mutant yielded diminished hdc gene cluster expression and diminished histamine production, suggesting a link between folate and histadine/histamine metabolism. The identification of genes and gene networks regulating production of bacterial‐derived immunoregulatory molecules may lead to improved anti‐inflammatory strategies for digestive diseases.
Collapse
Affiliation(s)
- Carissa M Thomas
- Integrative Molecular and Biomedical Sciences (IMBS), Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Delphine M A Saulnier
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Pathology, Texas Children's Hospital, 1102 Bates Ave, Houston, Texas, 77030
| | - Jennifer K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Pathology, Texas Children's Hospital, 1102 Bates Ave, Houston, Texas, 77030
| | - Peera Hemarajata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Chunxu Gao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Pathology, Texas Children's Hospital, 1102 Bates Ave, Houston, Texas, 77030
| | - Sara E Jones
- Integrative Molecular and Biomedical Sciences (IMBS), Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Ashley Grimm
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Pathology, Texas Children's Hospital, 1102 Bates Ave, Houston, Texas, 77030
| | - Miriam A Balderas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas.,Department of Pathology, Texas Children's Hospital, 1102 Bates Ave, Houston, Texas, 77030
| | - Matthew D Burstein
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Christina Morra
- Integrative Molecular and Biomedical Sciences (IMBS), Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030.,Department of Pathology, Texas Children's Hospital, 1102 Bates Ave, Houston, Texas, 77030
| | - Daniel Roeth
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, California, 91010
| | - Markus Kalkum
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, California, 91010
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas. .,Department of Pathology, Texas Children's Hospital, 1102 Bates Ave, Houston, Texas, 77030.
| |
Collapse
|
2
|
Abstract
Operons are clusters of genes that are transcribed as a single message, and regulated by the same gene expression machinery. They are found primarily in prokaryotic genomes. Because genes in the same operon are likely to have related functions, identification of the operon structure is potentially useful for assigning gene function. We report the development and benchmarking of two different methods for detecting operons, based on an analysis of 42 fully sequenced prokaryotic organisms. The Gene Neighbor method (GNM) utilizes the relatively high conservation of gene order in operons, compared with genes in general. The Gene Gap Method (GGM) makes use of the relatively short gap between genes in operons compared with that otherwise found between adjacent genes. The methods have been benchmarked using KEGG pathway data and RegulonDB Escherichia coli operon data. With optimum parameters, the specificity of the GNM is 93% and the sensitivity is 70%. For the GGM, the specificity is 95% and the sensitivity is 68%. Together, the two methods have a sensitivity of 87.2%, while joint predictions have a sensitivity of 50% and a specificity of 98%. The methods are used to infer possible functions for some hypothetical genes in prokaryotic genomes. The methods have proven a useful addition to structure information in deriving protein function in a structural genomics project.
Collapse
Affiliation(s)
- Yongpan Yan
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | |
Collapse
|
3
|
Murata T, Ohnishi M, Ara T, Kaneko J, Han CG, Li YF, Takashima K, Nojima H, Nakayama K, Kaji A, Kamio Y, Miki T, Mori H, Ohtsubo E, Terawaki Y, Hayashi T. Complete nucleotide sequence of plasmid Rts1: implications for evolution of large plasmid genomes. J Bacteriol 2002; 184:3194-202. [PMID: 12029035 PMCID: PMC135101 DOI: 10.1128/jb.184.12.3194-3202.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rts1, a large conjugative plasmid originally isolated from Proteus vulgaris, is a prototype for the IncT plasmids and exhibits pleiotropic thermosensitive phenotypes. Here we report the complete nucleotide sequence of Rts1. The genome is 217,182 bp in length and contains 300 potential open reading frames (ORFs). Among these, the products of 141 ORFs, including 9 previously identified genes, displayed significant sequence similarity to known proteins. The set of genes responsible for the conjugation function of Rts1 has been identified. A broad array of genes related to diverse processes of DNA metabolism were also identified. Of particular interest was the presence of tus-like genes that could be involved in replication termination. Inspection of the overall genome organization revealed that the Rts1 genome is composed of four large modules, providing an example of modular evolution of plasmid genomes.
Collapse
Affiliation(s)
- Takahiro Murata
- Department of Bacteriology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|