1
|
Yamamuro S, Takahashi M, Satomi K, Sasaki N, Kobayashi T, Uchida E, Kawauchi D, Nakano T, Fujii T, Narita Y, Kondo A, Wada K, Yoshino A, Ichimura K, Tomiyama A. Lomustine and nimustine exert efficient antitumor effects against glioblastoma models with acquired temozolomide resistance. Cancer Sci 2021; 112:4736-4747. [PMID: 34536314 PMCID: PMC8586660 DOI: 10.1111/cas.15141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastomas (GBM) often acquire resistance against temozolomide (TMZ) after continuous treatment and recur as TMZ‐resistant GBM (TMZ‐R‐GBM). Lomustine (CCNU) and nimustine (ACNU), which were previously used as standard therapeutic agents against GBM before TMZ, have occasionally been used for the salvage therapy of TMZ‐R‐GBM; however, their efficacy has not yet been thoroughly examined. Therefore, we investigated the antitumor effects of CCNU and ACNU against TMZ‐R‐GBM. As a model of TMZ‐R‐GBM, TMZ resistant clones of human GBM cell lines (U87, U251MG, and U343MG) were established (TMZ‐R‐cells) by the culture of each GBM cells under continuous TMZ treatment, and the antitumor effects of TMZ, CCNU, or ACNU against these cells were analyzed in vitro and in vivo. As a result, although growth arrest and apoptosis were triggered in all TMZ‐R‐cells after the administration of each drug, the antitumor effects of TMZ against TMZ‐R‐cells were significantly reduced compared to those of parental cells, whereas CCNU and ACNU demonstrated efficient antitumor effects on TMZ‐R‐cells as well as parental cells. It was also demonstrated that TMZ resistance of TMZ‐R‐cells was regulated at the initiation of DNA damage response. Furthermore, survival in mice was significantly prolonged by systemic treatment with CCNU or ACNU but not TMZ after implantation of TMZ‐R‐cells. These findings suggest that CCNU or ACNU may serve as a therapeutic agent in salvage treatment against TMZ‐R‐GBM.
Collapse
Affiliation(s)
- Shun Yamamuro
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurological Surgery, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Masamichi Takahashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Nobuyoshi Sasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Japan
| | - Tatsuya Kobayashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Eita Uchida
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka-City, Japan
| | - Daisuke Kawauchi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba-shi, Japan
| | - Tomoyuki Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Takashi Fujii
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-ku, Japan
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Atsuo Yoshino
- Department of Neurological Surgery, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Arata Tomiyama
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
2
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
3
|
Wajnberg G, Passetti F. Using high-throughput sequencing transcriptome data for INDEL detection: challenges for cancer drug discovery. Expert Opin Drug Discov 2016; 11:257-68. [PMID: 26787005 DOI: 10.1517/17460441.2016.1143813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION A cancer cell is a mosaic of genomic and epigenomic alterations. Distinct cancer molecular signatures can be observed depending on tumor type or patient genetic background. One type of genomic alteration is the insertion and/or deletion (INDEL) of nucleotides in the DNA sequence, which may vary in length, and may change the encoded protein or modify protein domains. INDELs are associated to a large number of diseases and their detection is done based on low-throughput techniques. However, high-throughput sequencing has also started to be used for detection of novel disease-causing INDELs. This search may identify novel drug targets. AREAS COVERED This review presents examples of using high-throughput sequencing (DNA-Seq and RNA-Seq) to investigate the incidence of INDELs in coding regions of human genes. Some of these examples successfully utilized RNA-Seq to identify INDELs associated to diseases. In addition, other studies have described small INDELs related to chemo-resistance or poor outcome of patients, while structural variants were associated with a better clinical outcome. EXPERT OPINION On average, there is twice as much RNA-Seq data available at the most used repositories for such data compared to DNA-Seq. Therefore, using RNA-Seq data is a promising strategy for studying cancer samples with unknown mechanisms of drug resistance, aiming at the discovery of proteins with potential as novel drug targets.
Collapse
Affiliation(s)
- Gabriel Wajnberg
- a Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute , Fundação Oswaldo Cruz (FIOCRUZ) , Rio de Janeiro , RJ , Brazil
| | - Fabio Passetti
- a Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute , Fundação Oswaldo Cruz (FIOCRUZ) , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
4
|
|
5
|
Zhang ZM, Wang Y, Huang R, Liu YP, Li X, Hu FL, Zhu L, Wang F, Cui BB, Dong XS, Zhao YS. TFAP2E hypermethylation was associated with survival advantage in patients with colorectal cancer. J Cancer Res Clin Oncol 2014; 140:2119-27. [PMID: 24996990 DOI: 10.1007/s00432-014-1766-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Hypermethylation of TFAP2E (AP-2E) is associated with the chemotherapy-resistant in patients with colorectal cancer (CRC), but its implications on prognosis directly remain unknown. This study was aimed to investigate the role of AP-2E methylation status and other clinicopathologic parameters as predictors of prognosis. METHODS We detected the methylation status of AP-2E in tumor and adjacent non-tumor tissues from 311 sporadic CRC patients by methylation-sensitive high-resolution melting analysis. Log-rank tests and multivariate Cox analyses were performed to evaluate the role of AP-2E methylation status and other clinicopathologic parameters as predictors of prognosis. RESULTS Hypermethylation of AP-2E was detected in 61 % (190/311) tumor tissues. It occurred more frequently in tumors in earlier stages (I/II; P = 0.02), lower levels of tumor invasion (T1-T3; P = 0.04), fewer lymph nodes involved (N0; P < 0.01), and higher histologic grades (G1/G2; P < 0.01). The overall 5-year survival rates in hypermethylation and hypomethylation group were 76.91 and 47.17 % (P < 0.0001), respectively. AP-2E hypermethylation was significantly associated with a favorable clinical outcome with a hazard ratio of 0.486 (95 % CI 0.342-0.692, P < 0.0001) after controlling for age, gender, tumor location, histologic type, TNM staging, and histologic grade. CONCLUSIONS AP-2E was frequently hypermethylated in tumors from patients with CRC. Aberrant hypermethylation of AP-2E occurred more frequently in tumors with earlier stages, lower levels of tumor invasion, fewer lymph nodes involved, and higher histologic grades. AP-2E hypermethylation might be an independent predictor of survival advantage in patients with CRC.
Collapse
Affiliation(s)
- Zuo-Ming Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hage-Sleiman R, Esmerian MO, Kobeissy H, Dbaibo G. p53 and Ceramide as Collaborators in the Stress Response. Int J Mol Sci 2013; 14:4982-5012. [PMID: 23455468 PMCID: PMC3634419 DOI: 10.3390/ijms14034982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023] Open
Abstract
The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this "tumor suppressor lipid", ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis. Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored. Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +961-1-350-000 (ext. 4883)
| | - Maria O. Esmerian
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Hadile Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| |
Collapse
|
7
|
Sehdev V, Katsha A, Ecsedy J, Zaika A, Belkhiri A, El-Rifai W. The combination of alisertib, an investigational Aurora kinase A inhibitor, and docetaxel promotes cell death and reduces tumor growth in preclinical cell models of upper gastrointestinal adenocarcinomas. Cancer 2012; 119:904-14. [PMID: 22972611 DOI: 10.1002/cncr.27801] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/02/2012] [Accepted: 08/01/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Upper gastrointestinal adenocarcinomas (UGCs) respond poorly to current chemotherapeutic regimes. The authors and others have previously reported frequent Aurora kinase A (AURKA) gene amplification and mRNA and protein overexpression in UGCs. The objective of the current study was to determine the therapeutic potential of alisertib (MLN8237) alone and in combination with docetaxel in UGCs. METHODS After treatment with alisertib and/or docetaxel, clonogenic cell survival, cell cycle analyses, Western blot analyses, and tumor xenograft growth assays were carried out to measure cell survival, cell cycle progression, apoptotic protein expression, and tumor xenograft volumes, respectively. RESULTS By using the AGS, FLO-1, and OE33 UGC cell lines, which have constitutive AURKA overexpression and variable tumor protein 53 (p53) status, significantly enhanced inhibition of cancer cell survival was observed with alisertib and docetaxel treatment in combination (P < .001), compared with single-agent treatments. Cell cycle analyses, after 48 hours of treatment with alisertib, produced a significant increase in the percentage of polyploidy in UGC cells (P < .01) that was further enhanced by docetaxel (P < .001). In addition, an increase in the percentage of cells in sub-G1-phase observed with alisertib (P < .01) was significantly enhanced with the combination treatment (P < .001). Western blot analysis demonstrated higher induction of cleaved caspase 3 protein expression with the combined treatment compared with single-agent treatments. In addition, FLO-1 and OE33 cell xenograft models demonstrated enhanced antitumor activity for the alisertib and docetaxel combination compared with single-agent treatments (P < .001). CONCLUSIONS The current study demonstrated that alisertib combined with docetaxel can mediate a better therapeutic outcome in UGC cell lines.
Collapse
Affiliation(s)
- Vikas Sehdev
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
8
|
p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. Arch Biochem Biophys 2011; 518:79-88. [PMID: 22198284 DOI: 10.1016/j.abb.2011.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/20/2022]
Abstract
Cancer cells with p53 mutations, in general, grow more aggressively than those with wild-type p53 and show "gain of function" (GOF) phenotypes such as increased growth rate, enhanced resistance to chemotherapeutic drugs, increased cell motility and tumorigenicity; although the mechanism for this function remains unknown. In this communication we report that p53-mediated NF-κB2 up-regulation significantly contributes to the aggressive oncogenic behavior of cancer cells. Lowering the level of mutant p53 in a number of cancer cell lines resulted in a loss of GOF phenotypes directly implicating p53 mutants in the process. RNAi against NF-κB2 in naturally occurring cancer cell lines also lowers GOF activities. In H1299 cells expressing mutant p53, chromatin immunoprecipitation (ChIP) assays indicate that mutant p53 induces histone acetylation at specific sites on the regulatory regions of its target genes. ChIP assays using antibodies against transcription factors putatively capable of interacting with the NF-κB2 promoter show increased interaction of CBP and STAT2 in the presence of mutant p53. Thus, we propose that in H1299 cells, mutant p53 elevates expression of genes capable of enhancing cell proliferation, motility, and tumorigenicity by inducing acetylation of histones via recruitment of CBP and STAT2 on the promoters causing CBP-mediated histone acetylation.
Collapse
|
9
|
Suzuki T, Fujii A, Ohya J, Nakamura H, Fujita F, Koike M, Fujita M. Antitumor activity of a dual epidermal growth factor receptor and ErbB2 kinase inhibitor MP-412 (AV-412) in mouse xenograft models. Cancer Sci 2009; 100:1526-31. [PMID: 19459856 PMCID: PMC11158850 DOI: 10.1111/j.1349-7006.2009.01197.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although epidermal growth factor receptor (EGFR) kinase inhibitors are effective for the treatment of non-small cell lung cancer (NSCLC), the emergence of mutations resistant to these inhibitors, such as T790M, has become a clinical problem. Recently, ErbB2 mutations have also been identified in a small number of NSCLC patients. Therefore, novel therapies to overcome these mutations are desirable. We describe the antitumor activity of MP-412 (AV-412), a dual EGFR/ErbB2 kinase inhibitor, against three lung cancer models with EGFR and ErbB2 mutations and also against various human xenografts with overexpression of these receptors. MP-412 inhibited phosphorylation of EGFR and its downstream signaling in NCI-H1650 and NCI-H1975 cell lines, which harbor the E746-A750 deletion and L858R + T790M point mutations, respectively, in EGFR. MP-412 inhibited the growth of these cell lines in vitro and in vivo, whereas the precedent kinase inhibitors lapatinib, erlotinib, and gefitinib were ineffective against NCI-H1975 cells in vivo. Furthermore, MP-412 inhibited ErbB2 signaling in the NCI-H1781 cell line, which harbors the G776V,C insertion in ErbB2, and correlated with its antiproliferation activity. When its antitumor spectrum was further explored in several cancer types overexpressing EGFR or ErbB2, MP-412 showed potent activity in KPL-4 and DU145 xenografts, in which lapatinib was ineffective. MP-412 also inhibited tumor models in which conventional chemotherapies were less effective. These results suggest that MP-412 is a potent dual inhibitor with the potential for treating solid cancers that overexpress EGFR or ErbB2, including NSCLC cells harboring mutations resistant to the first generation of kinase inhibitors.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Takeba Y, Sekine S, Kumai T, Matsumoto N, Nakaya S, Tsuzuki Y, Yanagida Y, Nakano H, Asakura T, Ohtsubo T, Kobayashi S. Irinotecan-induced apoptosis is inhibited by increased P-glycoprotein expression and decreased p53 in human hepatocellular carcinoma cells. Biol Pharm Bull 2007; 30:1400-1406. [PMID: 17666793 DOI: 10.1248/bpb.30.1400] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Irinotecan, a DNA topoisomerase I inhibitor, is widely used in cancer chemotherapy. However, little is known of the mechanisms of its antitumor effects and the development of drug resistance in human hepatocellular carcinoma (HCC). In this study, we investigated the effects of short-term culture with SN-38, the active metabolite of irinotecan, on apoptosis in Huh7 cells. The cells were cultured with SN-38 for 24, 72, and 120 h, and apoptosis was determined using the terminal dUTP nick-end labeling (TUNEL) assay. The expressions of p53, apoptosis-related proteins, and P-glycoprotein (P-gp), a protein conferring the multidrug-resistant phenotype, were analyzed using Western blotting. Induced expression of P-gp was detected using fluorescence microscopy. SN-38 significantly induced apoptosis in Huh7 cells at 24 h. SN-38 also increased the expression of p53, Bax, and caspase-9 and decreased Bcl-xL expression in Huh7 cells. SN-38 decreased p53 expression and increased P-gp expression after 120 h, resulting in inhibition of apoptosis. This inhibition was reversed by the addition of verapamil to the culture medium during 120 h incubation. SN-38-induced P-gp expression was additionally enhanced by p53 decoy oligodeoxynucleotide. The changes in P-gp expression were directly moderated by p53 gene downregulation, suggesting that it plays a role in the mechanism of drug resistance. These results suggest that the accumulation of irinotecan in HCC leads to the development of drug resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Camptothecin/analogs & derivatives
- Camptothecin/pharmacology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Humans
- In Situ Nick-End Labeling
- Irinotecan
- Liver Neoplasms/metabolism
- Microscopy, Fluorescence
- Oligonucleotides/pharmacology
- RNA, Neoplasm/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Takeba Y, Kumai T, Matsumoto N, Nakaya S, Tsuzuki Y, Yanagida Y, Kobayashi S. Irinotecan activates p53 with its active metabolite, resulting in human hepatocellular carcinoma apoptosis. J Pharmacol Sci 2007; 104:232-42. [PMID: 17609585 DOI: 10.1254/jphs.fp0070442] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The topoisomerase I inhibitor irinotecan is widely used in anticancer therapy, although the detailed mechanism is still unclear. We investigated the apoptotic mechanisms of irinotecan in human hepatocellular carcinoma (HCC) cell lines (Huh7). SN-38 caused a significant decrease in cell proliferation and induced apoptosis in Huh7 cells and HepG2 cells. SN-38 significantly increased the expression of p53 protein and its phosphorylation at Ser(15) in the nucleus and apoptosis-inducing proteins Bax, caspase-9, and caspase-3, while it significantly decreased the antiapoptosis protein Bcl-xL of Huh7 cells. SN-38-induced apoptosis was recovered after p53 antisense oligodeoxynucleotide (AS ODN) pretreatment, while Huh7 cells were precultured with p53 AS ODN, followed by the addition of SN-38 for 24 h. Furthermore, increases in p53 DNA-binding activity were observed in the nuclei of Huh7 cells after SN-38 treatment as shown by electrophoretic mobility shift analysis. SN-38 binding motifs were detected in the proximal promoter of p53 (bases -433 to -317 and -814 to -711). These results suggest that the p53-mediated apoptosis pathway is important in the anticancer effects of irinotecan in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaski, Kanagawa 216-8511, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Singh G, Singh SM. Cyclophosphamide-induced agenesis of cerebral aqueduct resulting in hydrocephalus in mice. Neurosurg Rev 2007; 30:245-51; discussion 251. [PMID: 17457626 DOI: 10.1007/s10143-007-0077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
The present work was undertaken to reveal the mechanism of cerebral aqueduct agenesis found to result in hydrocephalus following intrauterine exposure to model teratogen, cyclophosphamide, in murine fetuses. A single dose of 10-mg/kg body weight cyclophosphamide was injected intaperitoneally to pregnant mice on day 10, 11 or 12 of gestation. Fetuses were collected through abdominal incision on day 18 and studied for various malformations of brain and cranium including hydrocephalus. Incomplete development and failure of canalization of the cerebral aqueduct were detected when serial sections of brain in coronal and transverse planes were studied under the microscope. Biotechnological investigations such as % DNA fragmentation, % viable cell count and cell proliferation assay were carried out on brain cells for further studies. Agenesis and non-canalization of the cerebral aqueduct resulted in increased pressure of CSF, which led to rupture of the aqueduct complicated by leakage and accumulation of CSF in brain substance forming a cavity containing CSF parallel and lateral to the unopened part of the cerebral aqueduct. Incomplete development along with non-canalization of the cerebral aqueduct resulted in blockage of CSF flow through the ventricles that manifest as internal hydrocephalus. External hydrocephalus on the other hand was detected where the CSF accumulated in the cavity formed inside the brain substance and established communication with the CSF in the subarachnoid space. Cyclophosphamide induced inhibition of mitosis and cell differentiation of ependymal cells reflecting a decreased % viable cell count and cell proliferation assay along with augmentation of apoptosis of brain cells quantified as increased % DNA fragmentation count, which were identified as the contributing factors underlying the agenesis and incomplete development of the cerebral aqueduct. The study also suggests that cell survival, proliferation, migration or differentiation of ependymal cells might have been affected, and we speculate that CSF may have an inducing role in the development and canalization of the cerebral aqueduct.
Collapse
|
13
|
Sasaki T, Fujimori M, Hamaji Y, Hama Y, Ito KI, Amano J, Taniguchi S. Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci 2006; 97:649-57. [PMID: 16827806 PMCID: PMC11159642 DOI: 10.1111/j.1349-7006.2006.00221.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A fundamental obstacle in systemic therapy for cancer patients is the specific targeting of therapy directly to solid tumors. A strain of the domestic bacterium Bifidobacterium longum, which is non-pathogenic and anaerobic, showed selective localization to and proliferation within solid tumors after systemic application. Here, we propose a novel approach to cancer gene therapy in which anaerobic and non-pathogenic bacteria of the genus B. longum are used to achieve tumor-specific gene delivery and enzyme-prodrug therapy. We constructed a plasmid, pBLES100-S-eCD, which included eCD. Transfected B. longum produced CD in hypoxic tumors and achieved tumor site-specific conversion of 5-FC to 5-FU. Furthermore, we demonstrated antitumor efficacy in rat bearing autochthonous mammary tumors injected with the transfected B. longum directly or intravenously. This method was confirmed to be effective for enzyme-prodrug therapy not only by intratumoral injection but also by systemic administration. To estimate the toxicity of this bacterial vector, the systemic immunogenicity was evaluated by ASA reaction and the anaphylactic activity of IgG was evaluated by PCA reaction in guinea pigs. In the ASA reaction, no anaphylaxis symptoms were observed in any immunized guinea pigs injected with transfected B. longum. In the PCA reaction, B. longum/S-eCD specific-PCA-induced antibody was not detected. Thus, we proposed that anaerobic bacteria of the genus B. longum were an attractive and safe tumor-targeting vector and transfected B. longum was a potential anticancer agent that could effectively and specifically treat solid tumors.
Collapse
Affiliation(s)
- Takayuki Sasaki
- Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Corsten MF, Hofstra L, Narula J, Reutelingsperger CPM. Counting heads in the war against cancer: defining the role of annexin A5 imaging in cancer treatment and surveillance. Cancer Res 2006; 66:1255-60. [PMID: 16452175 DOI: 10.1158/0008-5472.can-05-3000] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The unveiling of the heterogeneous nature of cell death modes has compromised the long-lived consensus that cancer treatment typically kills cancer cells through apoptosis. Moreover, it implies that measures of apoptosis may be misleading indicators of treatment efficacy. Simultaneously, it has become clear that phosphatidylserine exposition, traditionally considered a hallmark of apoptosis, is also associated with most other cell death programs, rendering phosphatidylserine an attractive target for overall cell death imaging. Annexin A5 binds with strong affinity to phosphatidylserine and hence offers an interesting opportunity for visualization of aggregate cell death, thus providing a fit benchmark for in vivo monitoring of anticancer treatment. This might be of significant value for pharmacologic therapy development as well as clinical monitoring of treatment success.
Collapse
Affiliation(s)
- Maarten F Corsten
- Department of Cardiology, Cardiovascular Research Institute Maastricht, University Maastricht, P. Debyelaan 25, 6229 AD Maastricht, the Netherlands
| | | | | | | |
Collapse
|
15
|
Bhonde MR, Hanski ML, Notter M, Gillissen BF, Daniel PT, Zeitz M, Hanski C. Equivalent effect of DNA damage-induced apoptotic cell death or long-term cell cycle arrest on colon carcinoma cell proliferation and tumour growth. Oncogene 2006; 25:165-75. [PMID: 16170360 DOI: 10.1038/sj.onc.1209017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Knowledge of the type of biological reaction to chemotherapy is a prerequisite for its rational enhancement. We previously showed that irinotecan-induced DNA damage triggers in the HCT116p53(wt) colon carcinoma cell line a long-term cell cycle arrest and in HCT116p53(-/-) cells apoptosis (Magrini et al., 2002). To compare the contribution of long-term cell cycle arrest and that of apoptosis to inhibition of cell proliferation after irinotecan-induced DNA damage, we used this isogenic system as well as the cell lines LS174T (p53(wt)) and HT-29 (p53(mut)). Both p53(wt) cell lines responded to damage by undergoing a long-term tetraploid G1 arrest, whereas the p53(mut) cell lines underwent apoptosis. Cell cycle arrest as well as apoptosis caused a similar delay in cell proliferation. Irinotecan treatment also induced in mouse tumours derived from the p53(wt) cell lines a tetraploid G1 arrest and in those derived from the p53-deficient cell lines a transient G2/M arrest and apoptosis. The delay of tumour growth was in the same range in both groups, that is, arrest- and apoptosis-mediated tumour growth inhibition was comparable. In conclusion, cell cycle arrest as well as apoptosis may be equipotent mechanisms mediating the chemotherapeutic effects of irinotecan.
Collapse
Affiliation(s)
- M R Bhonde
- Department of Gastroenterology, Charité-Universitaetsmedizin Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Fujita F, Koike M, Fujita M, Sakamoto Y, Okuno S, Kawaguchi T, Yano S, Yano T, Kiuchi S, Fujiwara T, Kudoh S, Kakushima M. MEN4901/T-0128, a new camptothecin derivative-carboxymethyldextran conjugate, has potent antitumor activities in a panel of human tumor xenografts in nude mice. Clin Cancer Res 2005; 11:1650-7. [PMID: 15746070 DOI: 10.1158/1078-0432.ccr-04-1756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of the present study was to evaluate the antitumor activity and pharmacokinetic profile of MEN4901/T-0128 in nude mice bearing human tumor xenografts in comparison with irinotecan (CPT-11) and T-2513. EXPERIMENTAL DESIGN We have determined the antitumor activity of MEN4901/T-0128, CPT-11, and T-2513 in BALB/cA Jcl nude mice bearing human gastric (H-81), colon (H-110), lung (Mqnu-1, H-74), esophageal (H-204), liver (H-181), and pancreatic (H-48) cancer lines, which had been serially transplanted s.c. and maintained in nude mice, and characterized the pharmacokinetic profile of MEN4901/T-0128 in nude mice bearing human gastric carcinoma St-4. RESULTS MEN4901/T-0128 administered i.v. showed a marked antitumor activity in each of these tumor models, producing tumor shrinkage in the models of H-204 and H-181 carcinomas at its maximum tolerated dose of 80 mg/kg (expressed as T-2513) weekly for 4 weeks (q7d x 4) and tumor-shrinking or marked growth-inhibitory effects in the models of H-81, H-110, Mqnu-1, H-74, and H-48 carcinomas at 1/3 of its maximum tolerated dose (q7d x 4). Pharmacokinetic analysis showed that MEN4901/T-0128 had an extended plasma half-life with sustained tumor levels of T-2513, which may explain the superior activity of MEN4901/T-0128 in vivo. CONCLUSIONS Because the efficacies of some drugs in this human cancer-nude mouse panel correlated well with their clinical outcomes in patients with the same type of cancers, the findings provide direct support that MEN4901/T-0128 is more efficacious than CPT-11 and is an excellent candidate for clinical trials for the treatment of solid tumors.
Collapse
Affiliation(s)
- Fumiko Fujita
- Experimental Cancer Chemotherapy Research Laboratories Co., Ltd, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The inactivation of programmed cell death, or apoptosis, is central to the development of cancer. This disabling of apoptotic responses might be a major contributor both to treatment resistance and to the observation that, in many tumours, apoptosis is not the main mechanism for the death of cancer cells in response to common treatment regimens. Importantly, this suggests that other modes of cell death are involved in the response to therapy.
Collapse
Affiliation(s)
- J Martin Brown
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford, California 94305, USA.
| | | |
Collapse
|