1
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Kim HI, Seo SK, Chon SJ, Kim GH, Lee I, Yun BH. Changes in the Expression of TBP-2 in Response to Histone Deacetylase Inhibitor Treatment in Human Endometrial Cells. Int J Mol Sci 2021; 22:ijms22031427. [PMID: 33572677 PMCID: PMC7866992 DOI: 10.3390/ijms22031427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) induce apoptosis preferentially in cancer cells by caspase pathway activation and reactive oxygen species (ROS) accumulation. Suberoylanilide hydroxamic acid (SAHA), a HDACi, increases apoptosis via altering intracellular oxidative stress through thioredoxin (TRX) and TRX binding protein-2 (TBP-2). Because ROS accumulation, as well as the redox status determined by TBP-2 and TRX, are suggested as possible mechanisms for endometriosis, we queried whether SAHA induces apoptosis of human endometrial cells via the TRX–TBP-2 system in endometriosis. Eutopic endometrium from participants without endometriosis, and ectopic endometrium from patients with endometriosis, was obtained surgically. Human endometrial stromal cells (HESCs) and Ishikawa cells were treated with SAHA and cell proliferation was assessed using the CCK-8 assay. Real-time PCR and Western blotting were used to quantify TRX and TBP-2 mRNA and protein expression. After inducing oxidative stress, SAHA was applied. Short-interfering TRX (SiTRX) transfection was performed to see the changes after TRX inhibition. The mRNA and protein expression of TBP-2 was increased with SAHA concentrations in HESCs significantly. The mRNA TBP-2 expression was decreased after oxidative stress, upregulated by adding 2.5 μM of SAHA. The TRX/TBP-2 ratio decreased, apoptosis increased significantly, and SiTRX transfection decreased with SAHA. In conclusion, SAHA induces apoptosis by modulating the TRX/TBP-2 system, suggesting its potential as a therapeutic agent for endometriosis.
Collapse
Affiliation(s)
- Hye In Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (H.I.K.); (S.K.S.); (I.L.)
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (H.I.K.); (S.K.S.); (I.L.)
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gil Hospital, Gachon University College of Medicine, Inchon 21565, Korea;
| | - Ga Hee Kim
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Inha Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (H.I.K.); (S.K.S.); (I.L.)
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (H.I.K.); (S.K.S.); (I.L.)
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-2230
| |
Collapse
|
3
|
Novel fluorinated derivative of curcumin negatively regulates thioredoxin-interacting protein expression in retinal pigment epithelial and macrophage cells. Biochem Biophys Res Commun 2020; 532:668-674. [DOI: 10.1016/j.bbrc.2020.08.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
4
|
Kamitori K, Yamaguchi F, Dong Y, Hossain A, Katagi A, Noguchi C, Hirata Y, Tsukamoto I, Hatano N, Tokuda M. Both Ser361 phosphorylation and the C-arrestin domain of thioredoxin interacting protein are important for cell cycle blockade at the G1/S checkpoint. FEBS Open Bio 2018; 8:1804-1819. [PMID: 30410860 PMCID: PMC6212649 DOI: 10.1002/2211-5463.12518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 11/20/2022] Open
Abstract
Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor that is down‐regulated in several cancer tissues and tumor cell lines. Overexpression of TXNIP causes cell cycle arrest at the G1/S checkpoint in the hepatocellular carcinoma cell line HuH‐7. TXNIP contains putative phosphorylation sites, but the effects of its phosphorylation have not been fully characterized. TXNIP also contains two α‐arrestin domains (N‐arrestin and C‐arrestin) whose functions are not fully understood. Here, we reveal an association between TXNIP and cell cycle regulatory proteins (p27kip1, Jun activation domain‐binding protein 1 (JAB1), Cdk2, and cyclin E), suggesting its participation in cell cycle regulation. We observed phosphorylation of TXNIP and used both in vivo and in vitro kinase assays to demonstrate that TXNIP can be phosphorylated by p38 mitogen‐activated protein kinase. Furthermore, we also identified Ser361 in TXNIP as one of the major phosphorylation sites. Cell cycle analysis showed that Ser361 phosphorylation participates in TXNIP‐mediated cell cycle arrest. In addition, the C‐arrestin domain may also play an important role in cell cycle arrest. We also showed that phosphorylation at Ser361 may be important for the association of TXNIP with JAB1 and that the C‐arrestin domain is necessary for the nuclear localization of this molecule. Collectively, these studies reveal that TXNIP participates in cell cycle regulation through association with regulatory proteins, especially JAB1, and that C‐arrestin‐dependent nuclear localization is important for this function. This work may facilitate the development of a new cancer therapy strategy that targets TXNIP as a key molecule inhibiting cancer cell growth via cell cycle blockade at the G1/S checkpoint.
Collapse
Affiliation(s)
- Kazuyo Kamitori
- Departments of Cell Physiology Faculty of Medicine Kagawa University Miki-cho Japan
| | - Fuminori Yamaguchi
- Departments of Cell Physiology Faculty of Medicine Kagawa University Miki-cho Japan
| | - Youyi Dong
- Departments of Cell Physiology Faculty of Medicine Kagawa University Miki-cho Japan
| | - Akram Hossain
- Departments of Cell Physiology Faculty of Medicine Kagawa University Miki-cho Japan
| | - Ayako Katagi
- Departments of Cell Physiology Faculty of Medicine Kagawa University Miki-cho Japan
| | - Chisato Noguchi
- Departments of Cell Physiology Faculty of Medicine Kagawa University Miki-cho Japan
| | - Yuko Hirata
- Departments of Cell Physiology Faculty of Medicine Kagawa University Miki-cho Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics Faculty of Medicine Kagawa University Miki-cho Japan
| | - Naoya Hatano
- Integrated Center for Mass Spectrometry Kobe University Graduate School of Medicine Japan
| | - Masaaki Tokuda
- Departments of Cell Physiology Faculty of Medicine Kagawa University Miki-cho Japan
| |
Collapse
|
5
|
Kumar A, Mittal R. Mapping Txnip: Key connexions in progression of diabetic nephropathy. Pharmacol Rep 2017; 70:614-622. [PMID: 29684849 DOI: 10.1016/j.pharep.2017.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/13/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Studies demonstrates the major involvement of inflammatory and apoptotic pathway in the pathophysiology of diabetic nephropathy. The cross talk between inflammatory and apoptotic pathway suggests Txnip as a molecular connexion in progression of disease state. Txnip modulates inflammatory pathway (via ROS production and NLRP3 inflammasome activity) and apoptotic pathway (via mTOR pathway). The key contribution of Txnip in both the pathways, reflects, its crucial role in diabetic nephropathy. In the present review, we have first provided an overview of diabetic nephropathy and Txnip system, followed by the mechanistic insight of Txnip in the progression of diabetic nephropathy. This new mechanistic approach suggests to explore Txnip modulators as a promising therapeutic drug target in diabetic nephropathy.
Collapse
Affiliation(s)
- Anil Kumar
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | - Ruchika Mittal
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
7
|
Hwang J, Suh HW, Jeon YH, Hwang E, Nguyen LT, Yeom J, Lee SG, Lee C, Kim KJ, Kang BS, Jeong JO, Oh TK, Choi I, Lee JO, Kim MH. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun 2015; 5:2958. [PMID: 24389582 PMCID: PMC3941024 DOI: 10.1038/ncomms3958] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022] Open
Abstract
The redox-dependent inhibition of thioredoxin (TRX) by thioredoxin-interacting protein (TXNIP) plays a pivotal role in various cancers and metabolic syndromes. However, the molecular mechanism of this regulation is largely unknown. Here, we present the crystal structure of the TRX-TXNIP complex and demonstrate that the inhibition of TRX by TXNIP is mediated by an intermolecular disulphide interaction resulting from a novel disulphide bond-switching mechanism. Upon binding to TRX, TXNIP undergoes a structural rearrangement that involves switching of a head-to-tail interprotomer Cys63-Cys247 disulphide between TXNIP molecules to an interdomain Cys63-Cys190 disulphide, and the formation of a de novo intermolecular TXNIP Cys247-TRX Cys32 disulphide. This disulphide-switching event unexpectedly results in a domain arrangement of TXNIP that is entirely different from those of other arrestin family proteins. We further show that the intermolecular disulphide bond between TRX and TXNIP dissociates in the presence of high concentrations of reactive oxygen species. This study provides insight into TRX and TXNIP-dependent cellular regulation.
Collapse
Affiliation(s)
- Jungwon Hwang
- 1] Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea [2] Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Hyun-Woo Suh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong 339-700, Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk 363-883, Korea
| | - Loi T Nguyen
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Jeonghun Yeom
- 1] BRI, Korea Institute of Science and Technology, Seoul 136-791, Korea [2] Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Korea
| | - Seung-Goo Lee
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Cheolju Lee
- 1] BRI, Korea Institute of Science and Technology, Seoul 136-791, Korea [2] Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Korea
| | - Kyung Jin Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - Jin-Ok Jeong
- Division of Cardiology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 301-721, Korea
| | - Tae-Kwang Oh
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Jie-Oh Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Myung Hee Kim
- 1] Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea [2] Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-333, Korea
| |
Collapse
|
8
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
9
|
Spindel ON, World C, Berk BC. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal 2012; 16:587-96. [PMID: 21929372 PMCID: PMC3270053 DOI: 10.1089/ars.2011.4137] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The thioredoxin-interacting protein (TXNIP, also termed VDUP1 for vitamin D upregulated protein or TBP2 for thioredoxin-binding protein) was originally discovered by virtue of its strong regulation by vitamin D. Recently, TXNIP has been found to regulate the cellular reduction-oxidation (redox) state by binding to and inhibiting thioredoxin (TRX) in a redox-dependent fashion. RECENT ADVANCES Studies of the Hcb-19 mouse, TXNIP nonsense mutated mouse, demonstrate redox-mediated roles in lipid and glucose metabolism, cardiac function, inflammation, and carcinogenesis. Exciting recent data indicate important roles for TXNIP in redox independent signaling. Specifically, sequence analysis revealed that TXNIP is a member of the classical visual/β-arrestin superfamily, and is one of the six members of the arrestin domain-containing (ARRDC, or α-arrestin) family. CRITICAL ISSUES Although the function of α-arrestins is not well known, recent studies suggest roles in endocytosis and protein ubiquitination through PPxY motifs in their C-terminal tails. Importantly, the ability of TXNIP to inhibit glucose uptake was found to be independent of TRX binding. Further investigation showed that several metabolic functions of TXNIP were due to the arrestin domains, thus further supporting the importance of redox independent functions of TXNIP. FUTURE DIRECTIONS Since TXNIP transcription and protein stability are highly regulated by multiple tissue-specific stimuli, it appears that TXNIP should be a good therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Oded N. Spindel
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Cameron World
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Bradford C. Berk
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
10
|
Uchiumi F, Miyazaki S, Tanuma SI. [Biological functions of the duplicated GGAA-motifs in various human promoter regions]. YAKUGAKU ZASSHI 2011; 131:1787-800. [PMID: 22129877 DOI: 10.1248/yakushi.131.1787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription is one of the most fundamental cellular functions and is an enzyme-complex mediated reaction that converts DNA sequences into mRNA. TATA-box is known to be an important motif for transcription. However, there are majority of promoters that have no TATA-box. They are called as TATA-less promoters and possess other elements that determine the transcription start site (TSS) of the genes. Multiple protein factors including ETS family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ETS binding motifs play important roles in regulation of various promoters. Here, we propose that the duplication and multiplication of the GGAA motifs are responsible for the initiation of transcription from TATA-less promoters.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | |
Collapse
|
11
|
Masutani H, Yoshihara E, Masaki S, Chen Z, Yodoi J. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus. J Clin Biochem Nutr 2011; 50:23-34. [PMID: 22247597 PMCID: PMC3246179 DOI: 10.3164/jcbn.11-36sr] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/05/2011] [Indexed: 01/05/2023] Open
Abstract
Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Institute for Virus Research, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
12
|
The possible functions of duplicated ets (GGAA) motifs located near transcription start sites of various human genes. Cell Mol Life Sci 2011; 68:2039-51. [PMID: 21461879 PMCID: PMC3101357 DOI: 10.1007/s00018-011-0674-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/28/2011] [Accepted: 03/17/2011] [Indexed: 12/19/2022]
Abstract
Transcription is one of the most fundamental nuclear functions and is an enzyme complex-mediated reaction that converts DNA sequences into mRNA. Analyzing DNA sequences of 5′-flanking regions of several human genes that respond to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in HL-60 cells, we have identified that the ets (GGAA) motifs are duplicated, overlapped, or clustered within a 500-bp distance from the most 5′-upstream region of the cDNA. Multiple protein factors including Ets family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ets motifs play important roles in regulation of various promoters. Here, we propose a molecular mechanism, defined by the presence of duplication and multiplication of the GGAA motifs, that is responsible for the initiation of transcription of several genes and for the recruitment of binding proteins to the transcription start site (TSS) of TATA-less promoters.
Collapse
|
13
|
Hashiguchi K, Tsuchiya H, Tomita A, Ueda C, Akechi Y, Sakabe T, Kurimasa A, Nozaki M, Yamada T, Tsuchida S, Shiota G. Involvement of ETS1 in thioredoxin-binding protein 2 transcription induced by a synthetic retinoid CD437 in human osteosarcoma cells. Biochem Biophys Res Commun 2009; 391:621-6. [PMID: 19932085 DOI: 10.1016/j.bbrc.2009.11.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 02/09/2023]
Abstract
CD437, a synthetic retinoid, has a potent antitumor activity, in which an RAR-independent mechanism may be involved. Our previous study showed that CD437 transcriptionally upregulates the expression of thioredoxin-binding protein 2 (TBP2), leading to c-Jun N-terminal kinase 1 (JNK1)-mediated apoptosis. In the present study, we addressed the mechanism, by which CD437 induces TBP2 mRNA expression. CD437 efficiently caused the cell death of human osteosarcoma cells via apoptosis. CD437 also induced JNK1 activation through the upregulation of TBP2 mRNA, in consistent with our previous observation. A luciferase reporter assay for TBP2 promoter activation suggested that CD437-regulated TBP2 mRNA transcription requires the region between -400 and -300, which contains multiple possible ETS-binding sites. Finally, we demonstrated CD437-dependent recruitment of ETS1 transcription factor to this region by chromatin immunoprecipitation assay. These data suggest that ETS1 is involved in CD437-induced TBP2 mRNA expression in human osteosarcoma MG-63 cells.
Collapse
Affiliation(s)
- Koichi Hashiguchi
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Nishi-cho 86, Yonago 683-8504, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|