1
|
Hafez M, Gourlie R, McDonald M, Telfer M, Carmona MA, Sautua FJ, Moffat CS, Moolhuijzen PM, See PT, Aboukhaddour R. Evolution of the Toxb Gene in Pyrenophora tritici-repentis and Related Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:327-337. [PMID: 37759383 DOI: 10.1094/mpmi-08-23-0114-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Pyrenophora tritici-repentis (tan spot) is a destructive foliar pathogen of wheat with global impact. This ascomycete fungus possesses a highly plastic open pangenome shaped by the gain and loss of effector genes. This study investigated the allelic variations in the chlorosis-encoding gene ToxB across 422 isolates representing all identified pathotypes and worldwide origins. To gain better insights into ToxB evolution, we examined its presence and variability in other Pyrenophora spp. A ToxB haplotype network was constructed, revealing the evolutionary relationships of this gene (20 haplotypes) across four Pyrenophora species. Notably, toxb, the homolog of ToxB, was detected for the first time in the barley pathogen Pyrenophora teres. The ToxB/toxb genes display evidence of selection that is characterized by loss of function, duplication, and diverse mutations. Within the ToxB/toxb open reading frame, 72 mutations were identified, including 14 synonymous, 55 nonsynonymous, and 3 indel mutations. Remarkably, a, ∼5.6-kb Copia-like retrotransposon, named Copia-1_Ptr, was found inserted in the toxb gene of a race 3 isolate. This insert disrupted the ToxB gene's function, a first case of effector gene disruption by a transposable element in P. tritici-repentis. Additionally, a microsatellite with 25 nucleotide repeats (0 to 10) in the upstream region of ToxB suggested a potential mechanism influencing ToxB expression and regulation. Exploring ToxB-like protein distribution in other ascomycetes revealed the presence of ToxB-like proteins in 19 additional species, including the Leotiomycetes class for the first time. The presence/absence pattern of ToxB-like proteins defied species relatedness compared with a phylogenetic tree, suggesting a past horizontal gene transfer event during the evolution of the ToxB gene. [Formula: see text] Copyright © 2024 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food. This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mohamed Hafez
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Ryan Gourlie
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Megan McDonald
- School of Biosciences, University of Birmingham, Institute of Microbiology and Infection, Edgbaston, Birmingham, U.K
| | - Melissa Telfer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Marcelo A Carmona
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco J Sautua
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Australia
| | - Paula M Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Australia
| | - Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Australia
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
2
|
Shi G, Kariyawasam G, Liu S, Leng Y, Zhong S, Ali S, Moolhuijzen P, Moffat CS, Rasmussen JB, Friesen TL, Faris JD, Liu Z. A Conserved Hypothetical Gene Is Required but Not Sufficient for Ptr ToxC Production in Pyrenophora tritici-repentis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:336-348. [PMID: 35100008 DOI: 10.1094/mpmi-12-21-0299-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fungus Pyrenophora tritici-repentis causes tan spot, an important foliar disease of wheat worldwide. The fungal pathogen produces three necrotrophic effectors, namely Ptr ToxA, Ptr ToxB, and Ptr ToxC to induce necrosis or chlorosis in wheat. Both Ptr ToxA and Ptr ToxB are proteins, and their encoding genes have been cloned. Ptr ToxC was characterized as a low-molecular weight molecule 20 years ago but the one or more genes controlling its production in P. tritici-repentis are unknown. Here, we report the genetic mapping, molecular cloning, and functional analysis of a fungal gene that is required for Ptr ToxC production. The genetic locus controlling the production of Ptr ToxC, termed ToxC, was mapped to a subtelomeric region using segregating biparental populations, genome sequencing, and association analysis. Additional marker analysis further delimited ToxC to a 173-kb region. The predicted genes in the region were examined for presence/absence polymorphism in different races and isolates leading to the identification of a single candidate gene. Functional validation showed that this gene was required but not sufficient for Ptr ToxC production, thus it is designated as ToxC1. ToxC1 encoded a conserved hypothetical protein likely located on the vacuole membrane. The gene was highly expressed during infection, and only one haplotype was identified among 120 isolates sequenced. Our work suggests that Ptr ToxC is not a protein and is likely produced through a cascade of biosynthetic pathway. The identification of ToxC1 is a major step toward revealing the Ptr ToxC biosynthetic pathway and studying its molecular interactions with host factors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Gayan Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shaukat Ali
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University Brookings, SD 57006, U.S.A
| | - Paula Moolhuijzen
- Center for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Caroline S Moffat
- Center for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
3
|
Jacques S, Lenzo L, Stevens K, Lawrence J, Tan KC. An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. PLANT METHODS 2021; 17:52. [PMID: 34011363 PMCID: PMC8136220 DOI: 10.1186/s13007-021-00751-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND The necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) causes tan (syn. yellow) spot of wheat and accounts for significant yield losses worldwide. Understanding the molecular mechanisms of this economically important crop disease is crucial to counteract the yield and quality losses of wheat globally. Substantial progress has been made to comprehend the race structure of this phytopathogen based on its production of necrotrophic effectors and genomic resources of Ptr. However, one limitation for studying Ptr in a laboratory environment is the difficulty to isolate high spore numbers from vegetative growth with mycelial contamination common. These limitations reduce the experimental tractability of Ptr. RESULTS Here, we optimized a multitude of parameters and report a sporulation method for Ptr that yields robust, high quality and pure spores. Our methodology encompasses simple and reproducible plugging and harvesting techniques, resulting in spore yields up to 1500 fold more than the current sporulation methods and was tested on multiple isolates and races of Ptr as well as an additional seven modern Australian Ptr isolates. Moreover, this method also increased purity and spore harvest numbers for two closely related fungal pathogens (Pyrenophora teres f. maculata and f. teres) that cause net blotch diseases in barley (Hordeum vulgare), highlighting the usability of this optimized sporulation protocol for the wider research community. CONCLUSIONS Large-scale spore infection and virulence assays are essential for the screening of wheat and barley cultivars and combined with the genetic mapping of these populations allows pinpointing and exploiting sources of host genetic resistance. We anticipate that improvements in spore numbers and purity will further advance research to increase our understanding of the pathogenicity mechanisms of these important fungal pathogens.
Collapse
Affiliation(s)
- Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Leon Lenzo
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Kofi Stevens
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Julie Lawrence
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Perth, Australia.
| |
Collapse
|
4
|
Enniatin Production Influences Fusarium avenaceum Virulence on Potato Tubers, but not on Durum Wheat or Peas. Pathogens 2020; 9:pathogens9020075. [PMID: 31973184 PMCID: PMC7168684 DOI: 10.3390/pathogens9020075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Fusarium avenaceum is a generalist pathogen responsible for diseases in numerous crop species. The fungus produces a series of mycotoxins including the cyclohexadepsipeptide enniatins. Mycotoxins can be pathogenicity and virulence factors in various plant–pathogen interactions, and enniatins have been shown to influence aggressiveness on potato tubers. To determine the role of these mycotoxins in other F. avenaceum–host interactions, ENNIATIN SYNTHASE 1 (ESYN1) disruption and overexpression mutants were generated and their ability to infect wheat and peas investigated. As a preliminary study, the transformants were screened for their ability to cause potato tuber necrosis and, consistent with a previous report, enniatin production increased necrotic lesion size on the tubers. By contrast, when the same mutants were assessed in their ability to cause disease in pea roots or durum wheat spikes, no changes in disease symptoms or virulence were observed. While it is known that, at least in the case of wheat, exogenously applied enniatins can cause tissue necrosis, this group of mycotoxins does not appear to be a key factor on its own in disease development on peas or durum wheat.
Collapse
|
5
|
Wei B, Moscou MJ, Sato K, Gourlie R, Strelkov S, Aboukhaddour R. Identification of a Locus Conferring Dominant Susceptibility to Pyrenophora tritici-repentis in Barley. FRONTIERS IN PLANT SCIENCE 2020; 11:158. [PMID: 32180780 PMCID: PMC7059616 DOI: 10.3389/fpls.2020.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/31/2020] [Indexed: 05/17/2023]
Abstract
The fungus Pyrenophora tritici-repentis (Ptr) causes tan spot, a destructive foliar disease of wheat worldwide. The pathogen produces several necrotrophic effectors, which induce necrosis or chlorosis on susceptible wheat lines. Multiple races of Ptr have been identified, based on their ability to produce one or more of these effectors. Ptr has a wide host range of cereal and non-cereal grasses, but is known to cause damage only on wheat. Previously, we showed that Ptr can interact specifically with cultivated barley (Hordeum vulgare ssp. vulgare), and that the necrotrophic effector Ptr ToxB induces mild chlorosis in a highly selective manner when infiltrated into certain barley genotypes. In the present study, a barley doubled-haploid (DH) population was evaluated for reaction to Ptr race 5, a Ptr ToxB-producer. Then a comprehensive genetic map composed of 381 single nucleotide polymorphism (SNP) markers was used to map the locus conditioning this chlorosis. The F1 seedlings, and 92 DH lines derived from a cross between the resistant Japanese malting barley cultivar Haruna Nijo and the susceptible wild barley (H. vulgare ssp. spontaneum) OUH602 were inoculated with a conidial suspension of Ptr race 5 isolate at the two-leaf stage. The seedlings were monitored daily for symptoms and assessed for chlorosis development on the second leaf, 6 days after inoculation. All tested F1 seedlings exhibited chlorosis symptoms similar to the susceptible parent, and the DH lines segregated 1:1 for susceptible:resistant phenotypes, indicating the involvement of a single locus. Marker-trait linkage analysis based on interval mapping identified a single locus on the distal region of the short arm of chromosome 2H. We designate this locus Susceptibility to P. tritici-repentis1 (Spr1). The region encompassing this locus has 99 high confidence gene models, including membrane receptor-like kinases (RLKs), intracellular nucleotide-binding, leucine-rich repeat receptors (NLRs), and ankyrin-repeat proteins (ANKs). This shows the involvement of a dominant locus conferring susceptibility to Ptr in barley. Further work using high-resolution mapping and transgenic complementation will be required to identify the underlying gene.
Collapse
Affiliation(s)
- Bohan Wei
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Matthew J. Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ryan Gourlie
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Stephen Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Reem Aboukhaddour
- Cereal Pathology Lab, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
- *Correspondence: Reem Aboukhaddour,
| |
Collapse
|
6
|
Lelwala RV, Korhonen PK, Young ND, Scott JB, Ades PK, Gasser RB, Taylor PWJ. Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. PLoS One 2019; 14:e0212248. [PMID: 31150449 PMCID: PMC6544218 DOI: 10.1371/journal.pone.0212248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/02/2019] [Indexed: 01/30/2023] Open
Abstract
Colletotrichum tanaceti is an emerging foliar fungal pathogen of commercially grown pyrethrum (Tanacetum cinerariifolium). Despite being reported consistently from field surveys in Australia, the molecular basis of pathogenicity of C. tanaceti on pyrethrum is unknown. Herein, the genome of C. tanaceti (isolate BRIP57314) was assembled de novo and annotated using transcriptomic evidence. The inferred putative pathogenicity gene suite of C. tanaceti comprised a large array of genes encoding secreted effectors, proteases, CAZymes and secondary metabolites. Comparative analysis of its putative pathogenicity gene profiles with those of closely related species suggested that C. tanaceti likely has additional hosts to pyrethrum. The genome of C. tanaceti had a high repeat content and repetitive elements were located significantly closer to genes inferred to influence pathogenicity than other genes. These repeats are likely to have accelerated mutational and transposition rates in the genome, resulting in a rapid evolution of certain CAZyme families in this species. The C. tanaceti genome showed strong signals of Repeat Induced Point (RIP) mutation which likely caused its bipartite nature consisting of distinct gene-sparse, repeat and A-T rich regions. Pathogenicity genes within these RIP affected regions were likely to have a higher evolutionary rate than the rest of the genome. This "two-speed" genome phenomenon in certain Colletotrichum spp. was hypothesized to have caused the clustering of species based on the pathogenicity genes, to deviate from taxonomic relationships. The large repertoire of pathogenicity factors that potentially evolve rapidly due to the plasticity of the genome, indicated that C. tanaceti has a high evolutionary potential. Therefore, C. tanaceti poses a high-risk to the pyrethrum industry. Knowledge of the evolution and diversity of the putative pathogenicity genes will facilitate future research in disease management of C. tanaceti and other Colletotrichum spp.
Collapse
Affiliation(s)
- Ruvini V. Lelwala
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jason B. Scott
- Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania, Australia
| | - Peter K. Ades
- Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul W. J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Ziesman BR, Turkington TK, Basu U, Strelkov SE. A Quantitative PCR System for Measuring Sclerotinia sclerotiorum in Canola (Brassica napus). PLANT DISEASE 2016; 100:984-990. [PMID: 30686145 DOI: 10.1094/pdis-05-15-0605-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is an economically important disease of canola (Brassica napus) commonly managed by routine application of fungicides. Petal infestation has been demonstrated to be an important stage of the disease cycle in canola and has been the focus of previously developed Sclerotinia stem rot risk assessment methods. Quantitative polymerase chain reaction (qPCR) analysis can provide a more rapid and accurate assessment of petal infestation levels. Primers and a hydrolysis probe were designed to amplify a 70-bp region of an S. sclerotiorum-specific gene, SS1G_00263. A hydrolysis probe-based qPCR assay was developed that had a detection limit of 8.0 × 10-4 ng of S. sclerotiorum DNA and only amplified S. sclerotiorum DNA. Evaluation of petals collected at five sampling points in each of 10 commercial canola fields on each of two sampling dates (corresponding to 20 to 30% bloom and 40 to 50% bloom) revealed S. sclerotiorum DNA infestation levels of 0 to 3.3 × 10-1 ng/petal. This qPCR assay can be used to reliably quantify petal infestation and, with further research, has the potential to serve as the basis for a Sclerotinia stem rot risk assessment tool or as a means to study Sclerotinia stem rot epidemiology.
Collapse
Affiliation(s)
- B R Ziesman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - T K Turkington
- Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, AB, T4L 1W1, Canada
| | - U Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta
| | - S E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta
| |
Collapse
|
8
|
Figueroa M, Manning VA, Pandelova I, Ciuffetti LM. Persistence of the Host-Selective Toxin Ptr ToxB in the Apoplast. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1082-90. [PMID: 26057389 DOI: 10.1094/mpmi-05-15-0097-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The necrotrophic fungus Pyrenophora tritici-repentis is responsible for the disease tan spot of wheat. Ptr ToxB (ToxB), a proteinaceous host-selective toxin, is one of the effectors secreted by P. tritici-repentis. ToxB induces chlorosis in toxin-sensitive wheat cultivars and displays characteristics common to apoplastic effectors. We addressed the hypothesis that ToxB exerts its activity extracellularly. Our data indicate that hydraulic pressure applied in the apoplast following ToxB infiltration can displace ToxB-induced symptoms. In addition, treatment with a proteolytic cocktail following toxin infiltration results in reduction of symptom development and indicates that ToxB requires at least 8 h in planta to induce maximum symptom development. In vitro assays demonstrate that apoplastic fluids extracted from toxin-sensitive and -insensitive wheat cultivars cannot degrade ToxB. Additionally, ToxB can be reisolated from apoplastic fluid after toxin infiltration. Furthermore, localization studies of fluorescently labeled ToxB indicate that the toxin remains in the apoplast in toxin-sensitive and -insensitive wheat cultivars. Our findings support the hypothesis that ToxB acts as an extracellular effector.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Viola A Manning
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Iovanna Pandelova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Lynda M Ciuffetti
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| |
Collapse
|
9
|
Manning VA, Ciuffetti LM. Necrotrophic effector epistasis in the Pyrenophora tritici-repentis-wheat interaction. PLoS One 2015; 10:e0123548. [PMID: 25845019 PMCID: PMC4386829 DOI: 10.1371/journal.pone.0123548] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Pyrenophora tritici-repentis, the causal agent of tan spot disease of wheat, mediates disease by the production of host-selective toxins (HST). The known toxins are recognized in an 'inverse' gene-for-gene manner, where each is perceived by the product of a unique locus in the host and recognition leads to disease susceptibility. Given the importance of HSTs in disease development, we would predict that the loss of any of these major pathogenicity factors would result in reduced virulence and disease development. However, after either deletion of the gene encoding the HST ToxA or, reciprocally, heterologous expression of ToxA in a race that does not normally produce the toxin followed by inoculation of ToxA-sensitive and insensitive wheat cultivars, we demonstrate that ToxA symptom development can be epistatic to other HST-induced symptoms. ToxA epistasis on certain ToxA-sensitive wheat cultivars leads to genotype-specific increases in total leaf area affected by disease. These data indicate a complex interplay between host responses to HSTs in some genotypes and underscore the challenge of identifying additional HSTs whose activity may be masked by other toxins. Also, through mycelial staining, we acquire preliminary evidence that ToxA may provide additional benefits to fungal growth in planta in the absence of its cognate recognition partner in the host.
Collapse
Affiliation(s)
- Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
10
|
Moffat CS, See PT, Oliver RP. Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis. MOLECULAR PLANT PATHOLOGY 2014; 15:918-26. [PMID: 24831982 PMCID: PMC6638721 DOI: 10.1111/mpp.12154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The necrotrophic fungal pathogen Pyrenophora tritici-repentis causes tan spot, a major disease of wheat, throughout the world. The proteinaceous effector ToxA is responsible for foliar necrosis on ToxA-sensitive wheat genotypes. The single copy ToxA gene was deleted from a wild-type race 1 P. tritici-repentis isolate via homologous recombination of a knockout construct. Expression of the ToxA transcript was found to be absent in transformants (toxa), as was ToxA protein production in fungal culture filtrates. Plant bioassays were conducted to test transformant pathogenicity. The toxa strains were unable to induce necrosis on ToxA-sensitive wheat genotypes. To our knowledge, this is the first demonstration of a targeted gene knockout in P. tritici-repentis. The ability to undertake gene deletions will facilitate the characterization of other pathogenicity effectors of this economically significant necrotroph.
Collapse
Affiliation(s)
- Caroline S Moffat
- Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA, 6102, Australia
| | | | | |
Collapse
|
11
|
Pudake RN, Swaminathan S, Sahu BB, Leandro LF, Bhattacharyya MK. Investigation of the Fusarium virguliforme fvtox1 mutants revealed that the FvTox1 toxin is involved in foliar sudden death syndrome development in soybean. Curr Genet 2013; 59:107-17. [PMID: 23702608 DOI: 10.1007/s00294-013-0392-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/03/2013] [Accepted: 04/16/2013] [Indexed: 12/13/2022]
Abstract
The soil borne fungus, Fusarium virguliforme, causes sudden death syndrome (SDS) in soybean, which is a serious foliar and root rot disease. The pathogen has never been isolated from the diseased foliar tissues; phytotoxins produced by the pathogen are believed to cause foliar SDS symptoms. One of these toxins, a 13.5-kDa acidic protein named FvTox1, has been hypothesized to interfere with photosynthesis in infected soybean plants and cause foliar SDS. The objective of this study is to determine if FvTox1 is involved in foliar SDS development. We created and studied five independent knockout fvtox1 mutants to study the function of FvTox1. We conducted Agrobacterium tumefaciens-mediated transformation to accomplish homologous recombination of FvTox1 with a hygromycin B resistance gene, hph, to generate the fvtox1 mutants. Approximately 40 hygromycin-resistant transformants were obtained from 10(6) conidial spores of the F. virguliforme Mont-1 isolate when the spores were co-cultivated with the A. tumefaciens EHA105 but not with LBA4044 strain carrying a recombinant binary plasmid, in which the hph gene encoding hygromycin resistance was flanked by 5'- and 3'-end FvTox1 sequences. We observed homologous recombination-mediated integration of hph into the FvTox1 locus among five independent fvtox1 mutants. In stem-cutting assays using cut soybean seedlings fed with cell-free F. virguliforme culture filtrates, the knockout fvtox1 mutants caused chlorophyll losses and foliar SDS symptoms, which were over twofold less than those caused by the virulent F. virguliforme Mont-1 isolate. Similarly, in root inoculation assays, more than a twofold reduction in foliar SDS development and chlorophyll losses was observed among the seedlings infected with the fvtox1 mutants as compared to the seedlings infected with the wild-type Mont-1 isolate. These results suggest that FvTox1 is a major virulence factor involved in foliar SDS development in soybean. It is expected that interference of the function of this toxin in transgenic soybean plants will lead to generation of SDS-resistant soybean cultivars.
Collapse
Affiliation(s)
- Ramesh N Pudake
- Department of Agronomy, Iowa State University, Ames, IA 50011-1010, USA
| | | | | | | | | |
Collapse
|
12
|
Fu H, Feng J, Aboukhaddour R, Cao T, Hwang SF, Strelkov SE. An exo-1,3-β-glucanase GLU1 contributes to the virulence of the wheat tan spot pathogen Pyrenophora tritici-repentis. Fungal Biol 2013; 117:673-81. [PMID: 24119405 DOI: 10.1016/j.funbio.2013.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
Tan spot, caused by Pyrenophora tritici-repentis, is an important foliar disease of wheat. In the present study, a gene named glucanase gene (GLU1) encoding a putative exo-1,3-β-glucanase was cloned from a race five isolate of P. tritici-repentis. Transcription profile analysis of the GLU1 gene showed a carbon source control of the accumulation of transcript, which is strongly induced in minimal medium but depressed in rich medium. A time-course study of the infection process of the wild-type isolate on a susceptible wheat genotype revealed that the transcript level of GLU1 increased more than 8000-fold 8 h after inoculation. To study its potential function in pathogenicity, GLU1 was silenced via a sense and antisense mediated silencing mechanism. One transformant named C1 showed significantly reduced growth and sporulation relative to the wild-type. Cytological analysis of the infection revealed that C1 produced significantly lower numbers of germ tubes and appressoria than the wild-type strain on susceptible wheat leaves. This strain, as well as another two transformants, caused significantly less disease symptoms relative to the wild-type after inoculation onto a susceptible wheat genotype. These results indicate that GLU1 contributes to the development and virulence of P. tritici-repentis.
Collapse
Affiliation(s)
- Heting Fu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B, Holman WH, Kodira CD, Martin J, Oliver RP, Robbertse B, Schackwitz W, Schwartz DC, Spatafora JW, Turgeon BG, Yandava C, Young S, Zhou S, Zeng Q, Grigoriev IV, Ma LJ, Ciuffetti LM. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (BETHESDA, MD.) 2013; 3:41-63. [PMID: 23316438 PMCID: PMC3538342 DOI: 10.1534/g3.112.004044] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/02/2012] [Indexed: 12/31/2022]
Abstract
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
Collapse
Affiliation(s)
- Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Iovanna Pandelova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Braham Dhillon
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Larry J. Wilhelm
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Carbone/Ferguson Laboratories, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon 97006
| | - Stephen B. Goodwin
- USDA–Agricultural Research Service, Purdue University, West Lafayette, Indiana 47907
| | | | - Melania Figueroa
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- USDA-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, Oregon 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - James K. Hane
- Commonwealth Scientific and Industrial Research Organization−Plant Industry, Centre for Environment and Life Sciences, Floreat, Western Australia 6014, Australia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | - Wade H. Holman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Chinnappa D. Kodira
- The Broad Institute, Cambridge, Massachusetts 02142
- Roche 454, Branford, Connecticut 06405
| | - Joel Martin
- US DOE Joint Genome Institute, Walnut Creek, California 94598
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6845, Australia
| | - Barbara Robbertse
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | | | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14850
| | | | - Sarah Young
- The Broad Institute, Cambridge, Massachusetts 02142
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | | | | | - Li-Jun Ma
- The Broad Institute, Cambridge, Massachusetts 02142
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
14
|
Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJGM. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 2012; 37:67-93. [PMID: 22931103 DOI: 10.1111/j.1574-6976.2012.00349.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/01/2012] [Accepted: 07/19/2012] [Indexed: 01/25/2023] Open
Abstract
Many necrotrophic plant pathogenic fungi belonging to the class of Dothideomycetes produce phytotoxic metabolites and peptides that are usually required for pathogenicity. Phytotoxins that affect a broad range of plant species are known as non-host-specific toxins (non-HSTs), whereas HSTs affect only a particular plant species or more often genotypes of that species. For pathogens producing HSTs, pathogenicity and host specificity are largely defined by the ability to produce the toxin, while plant susceptibility is dependent on the presence of the toxin target. Non-HSTs are not the main determinants of pathogenicity but contribute to virulence of the producing pathogen. Dothideomycetes are remarkable for the production of toxins, particularly HSTs because they are the only fungal species known so far to produce them. The synthesis, regulation, and mechanisms of action of the most important HSTs and non-HSTs will be discussed. Studies on the mode of action of HSTs have highlighted the induction of programed cell death (PCD) as an important mechanism. We discuss HST-induced PCD and the plant hypersensitive response upon recognition of avirulence factors that share common pathways. In this respect, although nucleotide-binding-site-leucine-rich repeat types of resistance proteins mediate resistance against biotrophs, they can also contribute to susceptibility toward necrotrophs.
Collapse
|