1
|
Genomic differentiation between Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Pirenaica, Retinta and Rubia Gallega cattle breeds. Animal 2017; 11:1667-1679. [PMID: 28270253 DOI: 10.1017/s1751731117000398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Spanish local beef cattle breeds have most likely common origin followed by a process of differentiation. This particular historical evolution has most probably left detectable signatures in the genome. The objective of this study was to identify genomic regions associated with differentiation processes in seven Spanish autochthonous populations (Asturiana de los Valles (AV), Avileña-Negra Ibérica (ANI), Bruna dels Pirineus (BP), Morucha (Mo), Pirenaica (Pi), Retinta (Re) and Rubia Gallega (RG)). The BovineHD 777K BeadChip was used on 342 individuals (AV, n=50; ANI, n=48; BP, n=50; Mo, n=50; Pi, n=48; Re, n=48; RG, n=48) chosen to be as unrelated as possible. We calculated the fixation index (F ST ) and performed a Bayesian analysis named SelEstim. The output of both procedures was very similar, although the Bayesian analysis provided a richer inference and allowed us to calculate significance thresholds by generating a pseudo-observed data set from the estimated posterior distributions. We identified a very large number of genomic regions, but when a very restrictive significance threshold was applied these regions were reduced to only 10. Among them, four regions can be highlighted because they comprised a large number of single nucleotide polymorphisms and showed extremely high signals (Kullback-Leiber divergence (KLD)>6). They are located in BTA 2 (5 575 950 to 10 152 228 base pairs (bp)), BTA 5 (17 596 734 to 18 850 702 bp), BTA 6 (37 853 912 to 39 441 548 bp) and BTA 18 (13 345 515 to 15 243 838 bp) and harbor, among others, the MSTN (Myostatin), KIT-LG (KIT Ligand), LAP3 (leucine aminopeptidase 3), NAPCG (non-SMC condensing I complex, subunit G), LCORL (ligand dependent nuclear receptor corepressor-like) and MC1R (Melanocortin 1 receptor) genes. Knowledge on these genomic regions allows to identify potential targets of recent selection and helps to define potential candidate genes associated with traits of interest, such as coat color, muscle development, fertility, growth, carcass and immunological response.
Collapse
|
2
|
González-Rodríguez A, Munilla S, Mouresan EF, Cañas-Álvarez JJ, Díaz C, Piedrafita J, Altarriba J, Baro JÁ, Molina A, Varona L. On the performance of tests for the detection of signatures of selection: a case study with the Spanish autochthonous beef cattle populations. Genet Sel Evol 2016; 48:81. [PMID: 27793093 PMCID: PMC5084421 DOI: 10.1186/s12711-016-0258-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
Background Procedures for the detection of signatures of selection can be classified according to the source of information they use to reject the null hypothesis of absence of selection. Three main groups of tests can be identified that are based on: (1) the analysis of the site frequency spectrum, (2) the study of the extension of the linkage disequilibrium across the length of the haplotypes that surround the polymorphism, and (3) the differentiation among populations. The aim of this study was to compare the performance of a subset of these procedures by using a dataset on seven Spanish autochthonous beef cattle populations. Results Analysis of the correlations between the logarithms of the statistics that were obtained by 11 tests for detecting signatures of selection at each single nucleotide polymorphism confirmed that they can be clustered into the three main groups mentioned above. A factor analysis summarized the results of the 11 tests into three canonical axes that were each associated with one of the three groups. Moreover, the signatures of selection identified with the first and second groups of tests were shared across populations, whereas those with the third group were more breed-specific. Nevertheless, an enrichment analysis identified the metabolic pathways that were associated with each group; they coincided with canonical axes and were related to immune response, muscle development, protein biosynthesis, skin and pigmentation, glucose metabolism, fat metabolism, embryogenesis and morphology, heart and uterine metabolism, regulation of the hypothalamic–pituitary–thyroid axis, hormonal, cellular cycle, cell signaling and extracellular receptors. Conclusions We show that the results of the procedures used to identify signals of selection differed substantially between the three groups of tests. However, they can be classified using a factor analysis. Moreover, each canonical factor that coincided with a group of tests identified different signals of selection, which could be attributed to processes of selection that occurred at different evolutionary times. Nevertheless, the metabolic pathways that were associated with each group of tests were similar, which suggests that the selection events that occurred during the evolutionary history of the populations probably affected the same group of traits. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0258-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sebastián Munilla
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Saragossa, Spain.,Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, 1417, Buenos Aires, Argentina
| | - Elena F Mouresan
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Saragossa, Spain
| | - Jhon J Cañas-Álvarez
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Clara Díaz
- Departamento de Mejora Genética Animal, INIA, 28040, Madrid, Spain
| | - Jesús Piedrafita
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Juan Altarriba
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Saragossa, Spain.,Instituto Agroalimentario de Aragón (IA2), 50013, Saragossa, Spain
| | - Jesús Á Baro
- Departamento de Ciencias Agroforestales, Universidad de Valladolid, 34004, Palencia, Spain
| | | | - Luis Varona
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Saragossa, Spain. .,Instituto Agroalimentario de Aragón (IA2), 50013, Saragossa, Spain.
| |
Collapse
|
3
|
Randhawa IAS, Khatkar MS, Thomson PC, Raadsma HW. A Meta-Assembly of Selection Signatures in Cattle. PLoS One 2016; 11:e0153013. [PMID: 27045296 PMCID: PMC4821596 DOI: 10.1371/journal.pone.0153013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Since domestication, significant genetic improvement has been achieved for many traits of commercial importance in cattle, including adaptation, appearance and production. In response to such intense selection pressures, the bovine genome has undergone changes at the underlying regions of functional genetic variants, which are termed “selection signatures”. This article reviews 64 recent (2009–2015) investigations testing genomic diversity for departure from neutrality in worldwide cattle populations. In particular, we constructed a meta-assembly of 16,158 selection signatures for individual breeds and their archetype groups (European, African, Zebu and composite) from 56 genome-wide scans representing 70,743 animals of 90 pure and crossbred cattle breeds. Meta-selection-scores (MSS) were computed by combining published results at every given locus, within a sliding window span. MSS were adjusted for common samples across studies and were weighted for significance thresholds across and within studies. Published selection signatures show extensive coverage across the bovine genome, however, the meta-assembly provides a consensus profile of 263 genomic regions of which 141 were unique (113 were breed-specific) and 122 were shared across cattle archetypes. The most prominent peaks of MSS represent regions under selection across multiple populations and harboured genes of known major effects (coat color, polledness and muscle hypertrophy) and genes known to influence polygenic traits (stature, adaptation, feed efficiency, immunity, behaviour, reproduction, beef and dairy production). As the first meta-assembly of selection signatures, it offers novel insights about the hotspots of selective sweeps in the bovine genome, and this method could equally be applied to other species.
Collapse
Affiliation(s)
- Imtiaz A. S. Randhawa
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
- * E-mail:
| | - Mehar S. Khatkar
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| | - Peter C. Thomson
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| | - Herman W. Raadsma
- Reprogen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, 2570, NSW, Australia
| |
Collapse
|
4
|
de Simoni Gouveia JJ, da Silva MVGB, Paiva SR, de Oliveira SMP. Identification of selection signatures in livestock species. Genet Mol Biol 2014; 37:330-42. [PMID: 25071397 PMCID: PMC4094609 DOI: 10.1590/s1415-47572014000300004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022] Open
Abstract
The identification of regions that have undergone selection is one of the principal goals of theoretical and applied evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shaping genomes, as well as physical and functional information about genes/genomic regions. Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics. The advances in genomics in the last five years have enabled the development of several methods to detect selection signatures and have resulted in the publication of a considerable number of studies involving livestock species. The aims of this review are to describe the principal effects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signatures and to discuss some recent results in this area. This review should be useful also to research scientists working with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology.
Collapse
Affiliation(s)
- João José de Simoni Gouveia
- Colegiado Acadêmico de Zootecnia , Universidade Federal do Vale do São Francisco , Petrolina, PE , Brazil . ; Programa de Doutorado Integrado em Zootecnia , Universidade Federal do Ceará , Fortaleza, CE , Brazil
| | | | | | | |
Collapse
|
6
|
Wiener P, Wilkinson S. Deciphering the genetic basis of animal domestication. Proc Biol Sci 2011; 278:3161-70. [PMID: 21885467 DOI: 10.1098/rspb.2011.1376] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genomic technologies for livestock and companion animal species have revolutionized the study of animal domestication, allowing an increasingly detailed description of the genetic changes accompanying domestication and breed development. This review describes important recent results derived from the application of population and quantitative genetic approaches to the study of genetic changes in the major domesticated species. These include findings of regions of the genome that show between-breed differentiation, evidence of selective sweeps within individual genomes and signatures of demographic events. Particular attention is focused on the study of the genetics of behavioural traits and the implications for domestication. Despite the operation of severe bottlenecks, high levels of inbreeding and intensive selection during the history of domestication, most domestic animal species are genetically diverse. Possible explanations for this phenomenon are discussed. The major insights from the surveyed studies are highlighted and directions for future study are suggested.
Collapse
Affiliation(s)
- Pamela Wiener
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | | |
Collapse
|