1
|
Sato T, Mishima E, Mano N, Abe T, Yamaguchi H. Potential Drug Interactions Mediated by Renal Organic Anion Transporter OATP4C1. J Pharmacol Exp Ther 2017; 362:271-277. [PMID: 28550055 DOI: 10.1124/jpet.117.241703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Organic anion-transporting polypeptide 4C1 (OATP4C1) is an organic anion transporter expressed in the basolateral membrane of the renal proximal tubules. It plays a major role in the urinary excretion of both exogenous drugs and endogenous compounds. Our previous studies have indicated the importance of OATP4C1 in pathologic and physiologic conditions; however, the majority of its pharmacologic characteristics remained unclear. Therefore, to provide essential information for clinical drug therapy decisions and drug development, we clarified drug interactions mediated by OATP4C1. To elucidate potential drug interactions via OATP4C1, we screened 53 representative drugs commonly used in clinical settings. Next, we evaluated the IC50 values of drugs that inhibited OATP4C1 by more than 50%. To apply our results to clinical settings, we calculated the drug-drug interaction (DDI) indices. The screening analysis using an OATP4C1-expressing cell system demonstrated that 22 out of 53 therapeutic drugs inhibited OATP4C1-mediated triiodothyronine transport. In particular, OATP4C1-mediated transport was strongly inhibited by 10 drugs. The IC50 values of 10 drugs-nicardipine, spironolactone, fluvastatin, crizotinib, levofloxacin, clarithromycin, ritonavir, saquinavir, quinidine, and verapamil-obtained in this study were 51, 53, 41, 24, 420, 200, 8.5, 4.3, 100, and 110 µM, respectively. The IC50 values of these drugs were higher than the plasma concentrations obtained in clinical practice. However, ritonavir showed the highest DDI index (1.9) for OATP4C1, suggesting that it may strongly influence this transporter and thus cause drug interactions seen in clinical settings. Our finding gives new insight into the role of OATP4C1 in clinical DDIs.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| | - Eikan Mishima
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| | - Takaaki Abe
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital (T.S., N.M., H.Y.); Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine (E.M., T.A.); Division of Medical Science, Graduate School of Biomedical Engineering (T.A.); Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine (T.A.), Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Baldwin KA, Budzinski CE, Shapiro CJ. Acute Sensorineural Hearing Loss: Furosemide Ototoxicity Revisited. Hosp Pharm 2008. [DOI: 10.1310/hpj4312-982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Agha AM, El-Khatib AS, Kenawy SA, Khayyal MT. The influence of carbon tetrachloride-induced liver damage on the inflammatory reaction elicited by carrageenan and its treatment with diclofenac. Pharmacol Res 1995; 32:75-84. [PMID: 8668651 DOI: 10.1016/s1043-6618(95)80012-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of impaired hepatic function on the development of the inflammatory process as well as on treatment with diclofenac was investigated. Carbon tetrachloride was used to induce liver injury and the elevation of serum transaminases was taken as evidence for impaired hepatic function. The carrageenan-induced rat hind paw oedema and the granuloma pouch were chosen as models of inflammation. The results of the study revealed that: (1) The intensity of inflammation in both models was markedly attenuated in CCl4-treated animals. (2) Serum total proteins were decreased in liver-injured animals particularly in acute experiments. (3) In liver-injured groups diclofenac showed more pronounced anti-inflammatory activity in chronic experiments, but not in acute ones. (4) Neither CCl4 nor diclofenac affected the levels of histamine and serotonin in the granuloma pouch exudate. The level of prostaglandins was decreased in CCl4 and in diclofenac-treated animals. At the same time, the leukotriene content was elevated. The mechanism by which CCl4 induced liver injury attenuates inflammatory response to carrageenan is not entirely understood. Its effect on protein metabolism and extravasation as well as on PG synthesis could play a possible role. Decreased drug metabolism may be, at least in part, responsible for the enhanced response of diclofenac in the cases of liver-injured animals. Dose adjustment of the drug in case of hepatic impairment might be necessary.
Collapse
Affiliation(s)
- A M Agha
- Department of Pharmacology, Cairo University, Egypt
| | | | | | | |
Collapse
|
4
|
Zini R, Riant P, Barré J, Tillement JP. Disease-induced variations in plasma protein levels. Implications for drug dosage regimens (Part II). Clin Pharmacokinet 1990; 19:218-29. [PMID: 2203581 DOI: 10.2165/00003088-199019030-00005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Part I of this article, which appeared in the previous issue of the Journal, discussed the implications of variations in plasma protein levels in a number of diseases: hepatic and renal disease, acute myocardial infarction, burns, cancer, diabetes mellitus, hyperlipidaemia and inflammatory diseases. In Part II the authors continue their review with a further range of disease states, and consider their import for drug dosages.
Collapse
Affiliation(s)
- R Zini
- Department Hospital-Universitaire de Pharmacologie, Créteil, France
| | | | | | | |
Collapse
|