1
|
Yip HF, Chowdhury D, Wang K, Liu Y, Gao Y, Lan L, Zheng C, Guan D, Lam KF, Zhu H, Tai X, Lu A. ReDisX, a machine learning approach, rationalizes rheumatoid arthritis and coronary artery disease patients uniquely upon identifying subpopulation differentiation markers from their genomic data. Front Med (Lausanne) 2022; 9:931860. [PMID: 36072953 PMCID: PMC9441882 DOI: 10.3389/fmed.2022.931860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Diseases originate at the molecular-genetic layer, manifest through altered biochemical homeostasis, and develop symptoms later. Hence, symptomatic diagnosis is inadequate to explain the underlying molecular-genetic abnormality and individual genomic disparities. The current trends include molecular-genetic information relying on algorithms to recognize the disease subtypes through gene expressions. Despite their disposition toward disease-specific heterogeneity and cross-disease homogeneity, a gap still exists in describing the extent of homogeneity within the heterogeneous subpopulation of different diseases. They are limited to obtaining the holistic sense of the whole genome-based diagnosis resulting in inaccurate diagnosis and subsequent management. Addressing those ambiguities, our proposed framework, ReDisX, introduces a unique classification system for the patients based on their genomic signatures. In this study, it is a scalable machine learning algorithm deployed to re-categorize the patients with rheumatoid arthritis and coronary artery disease. It reveals heterogeneous subpopulations within a disease and homogenous subpopulations across different diseases. Besides, it identifies granzyme B (GZMB) as a subpopulation-differentiation marker that plausibly serves as a prominent indicator for GZMB-targeted drug repurposing. The ReDisX framework offers a novel strategy to redefine disease diagnosis through characterizing personalized genomic signatures. It may rejuvenate the landscape of precision and personalized diagnosis and a clue to drug repurposing.
Collapse
Affiliation(s)
- Hiu F. Yip
- Computational Medicine Laboratory, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Debajyoti Chowdhury
- Computational Medicine Laboratory, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Kexin Wang
- National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangzhou, China
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yao Gao
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Liang Lan
- Department of Communication Studies, School of Communication, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Chaochao Zheng
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Kei F. Lam
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Hailong Zhu
- Computational Medicine Laboratory, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Xuecheng Tai
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Aiping Lu
- Computational Medicine Laboratory, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Calvo Sánchez J, Köhn M. Small but Mighty-The Emerging Role of snoRNAs in Hematological Malignancies. Noncoding RNA 2021; 7:68. [PMID: 34842767 PMCID: PMC8629011 DOI: 10.3390/ncrna7040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Over recent years, the long known class of small nucleolar RNAs (snoRNAs) have gained interest among the scientific community, especially in the clinical context. The main molecular role of this interesting family of non-coding RNAs is to serve as scaffolding RNAs to mediate site-specific RNA modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). With the development of new sequencing techniques and sophisticated analysis pipelines, new members of the snoRNA family were identified and global expression patterns in disease backgrounds could be determined. We will herein shed light on the current research progress in snoRNA biology and their clinical role by influencing disease outcome in hematological diseases. Astonishingly, in recent studies snoRNAs emerged as potent biomarkers in a variety of these clinical setups, which is also highlighted by the frequent deregulation of snoRNA levels in the hema-oncological context. However, research is only starting to reveal how snoRNAs might influence cellular functions and the connected disease hallmarks in hematological malignancies.
Collapse
Affiliation(s)
| | - Marcel Köhn
- Junior Research Group ‘RBPs and ncRNAs in Human Diseases’, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Saale, Germany;
| |
Collapse
|
3
|
Lu Y, Yu S, Wang G, Ma Z, Fu X, Cao Y, Li Q, Xu Z. Elevation of EIF4G1 promotes non-small cell lung cancer progression by activating mTOR signalling. J Cell Mol Med 2021; 25:2994-3005. [PMID: 33523588 PMCID: PMC7957198 DOI: 10.1111/jcmm.16340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1), as the key component of the transcription initiation factor complex EIF4F, is significantly upregulated in multiple solid tumours, including lung cancer. However, the function and mechanism of EIF4G1 in the regulation of non‐small‐cell lung cancer (NSCLC) remain unclear. Here, using the clinical samples and the comprehensive survival analysis platforms Kaplan‐Meier plotter, we observed aberrant upregulation of EIF4G1 in NSCLC tissues; furthermore, high expression of EIF4G1 showed association with low differentiation of lung cancer cells and poor overall survival in NSCLC patients. Non‐small‐cell lung cancer cell line A549 and H1703 stably infected with EIF4G1 shRNA were used to determine the function of EIF4G1 in regulating cell proliferation and tumorigenesis in vitro and in vivo. The results demonstrated that EIF4G1 promoted the G1/S transition of the cell cycle and tumour cell proliferation in non‐small cell lung cancer. Mechanistically, EIF4G1 was found to regulate the expression and phosphorylation of mTOR (Ser2448), which mediates the tumorigenesis‐promoting function of EIF4G1. The inhibition of mTOR attenuated the EIF4G1‐induced development and progression of tumours. These findings demonstrated that EIF4G1 is a new potential molecular target for the clinical treatment of non‐small cell lung cancer.
Collapse
Affiliation(s)
- Ying Lu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuan Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuelian Fu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueyu Cao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinchuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zengguang Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting. Blood Adv 2020; 3:4202-4214. [PMID: 31856269 DOI: 10.1182/bloodadvances.2019000702] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Prosurvival BCL-2 family proteins are potent inhibitors of apoptosis and often overexpressed in lymphoid malignancies. In multiple myeloma (MM), MCL-1 expression contributes to survival of malignant plasma cells, and overexpression correlates with poor prognosis. In this study, we investigated whether sensitivity to the novel MCL-1 inhibitor S63845 could be predicted using cytogenetics, focusing on amplification of 1q21, the chromosomal region that contains the MCL1 locus. In addition, we studied the relation of MCL-1 inhibitor sensitivity with other diagnostic characteristics and BCL-2 family protein expression. In 31 human myeloma cell lines and in bone marrow aspirates from 47 newly diagnosed MM patients, we measured the effect of S63845 alone, or combined with BCL-2 inhibitor ABT-199 (venetoclax), and BCL-XL inhibitor A-1155463 or A-1331852 on cell viability. We demonstrated for the first time that MM cells from patients with 1q21 amplification are significantly more sensitive to inhibition of MCL-1. We suggest that this increased sensitivity results from high relative MCL1 expression resulting from amplification of 1q21. Additionally, and partially independent from 1q21 status, high serum β2 microglobulin level and presence of renal insufficiency correlated with increased sensitivity to MCL-1 inhibitor treatment. Combining S63845 with other BH3 mimetics synergistically enhanced apoptosis compared with single inhibitors, and sensitivity to inhibitor combinations was found in a large proportion of MM insensitive to MCL-1 inhibition alone. Collectively, our data indicate that amplification of 1q21 identifies an MM subset highly sensitive to MCL-1 inhibitor treatment and can be used as a predictive marker to guide selection of therapy.
Collapse
|
5
|
Manzoni M, Marchica V, Storti P, Ziccheddu B, Sammarelli G, Todaro G, Pelizzoni F, Salerio S, Notarfranchi L, Pompa A, Baldini L, Bolli N, Neri A, Giuliani N, Lionetti M. Application of Next-Generation Sequencing for the Genomic Characterization of Patients with Smoldering Myeloma. Cancers (Basel) 2020; 12:cancers12051332. [PMID: 32456143 PMCID: PMC7281620 DOI: 10.3390/cancers12051332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Genomic analysis could contribute to a better understanding of the biological determinants of the evolution of multiple myeloma (MM) precursor disease and an improved definition of high-risk patients. To assess the feasibility and value of next-generation sequencing approaches in an asymptomatic setting, we performed a targeted gene mutation analysis and a genome-wide assessment of copy number alterations (CNAs) by ultra-low-pass whole genome sequencing (ULP-WGS) in six patients with monoclonal gammopathy of undetermined significance and 25 patients with smoldering MM (SMM). Our comprehensive genomic characterization highlighted heterogeneous but substantial values of the tumor fraction, especially in SMM; a rather high degree of genomic complexity, in terms of both mutations and CNAs, and inter-patient variability; a higher incidence of gene mutations and CNAs in SMM, confirming ongoing evolution; intraclonal heterogeneity; and instances of convergent evolution. ULP-WGS of these patients proved effective in revealing the marked genome-wide level of their CNAs, most of which are not routinely investigated. Finally, the analysis of our small SMM cohort suggested that chr(8p) deletions, the DNA tumor fraction, and the number of alterations may have clinical relevance in the progression to overt MM. Although validation in larger series is mandatory, these findings highlight the promising impact of genomic approaches in the clinical management of SMM.
Collapse
Affiliation(s)
- Martina Manzoni
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
| | - Valentina Marchica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (V.M.); (P.S.); (L.N.); (N.G.)
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (V.M.); (P.S.); (L.N.); (N.G.)
| | - Bachisio Ziccheddu
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Gabriella Sammarelli
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy; (G.S.); (G.T.)
| | - Giannalisa Todaro
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy; (G.S.); (G.T.)
| | - Francesca Pelizzoni
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
| | - Simone Salerio
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
| | - Laura Notarfranchi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (V.M.); (P.S.); (L.N.); (N.G.)
| | - Alessandra Pompa
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
| | - Luca Baldini
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
| | - Niccolò Bolli
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
- Correspondence:
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (V.M.); (P.S.); (L.N.); (N.G.)
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy; (G.S.); (G.T.)
| | - Marta Lionetti
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
| |
Collapse
|
6
|
Ronchetti D, Todoerti K, Vinci C, Favasuli V, Agnelli L, Manzoni M, Pelizzoni F, Chiaramonte R, Platonova N, Giuliani N, Tassone P, Amodio N, Neri A, Taiana E. Expression Pattern and Biological Significance of the lncRNA ST3GAL6-AS1 in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12040782. [PMID: 32218309 PMCID: PMC7225964 DOI: 10.3390/cancers12040782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022] Open
Abstract
The biological impact of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) is becoming an important aspect of investigation, which may contribute to the understanding of the complex pathobiology of the disease whilst also providing novel potential therapeutic targets. Herein, we investigated the expression pattern and the biological significance of the lncRNA ST3 beta-galactoside alpha-2,3 sialyltransferase 6 antisense RNA 1 (ST3GAL6-AS1) in MM. We documented a high ST3GAL6-AS1 expression level in MM compared to normal plasma cells (PCs) or other hematological malignancies. Transcriptome analyses of MM PCs from patients included in the CoMMpass database indicated a potential involvement of ST3GAL6-AS1 in MAPK signaling and ubiquitin-mediated proteolysis pathways. ST3GAL6-AS1 silencing by LNA-gapmeR antisense oligonucleotides inhibits cell proliferation and triggers apoptosis in MM cell line. Notably, ST3GAL6-AS1 silencing in vitro displayed the down-regulation of the MAPK pathway and protein ubiquitination. These data suggest that ST3GAL6-AS1 deregulation may play a pathogenetic role in MM by affecting both proliferation pathways and circuits fundamental for PC survival. However, ST3GAL6-AS1 expression levels seem not to be significantly associated with clinical outcome and its targeting appears to exert antagonistic effects with proteasome inhibitors used in MM. These findings strongly urge the need for further studies investigating the relevance of ST3GAL6-AS1 in MM.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Cristina Vinci
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
| | - Vanessa Favasuli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
| | - Martina Manzoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Francesca Pelizzoni
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| | - Raffaella Chiaramonte
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (R.C.); (N.P.)
| | - Natalia Platonova
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (R.C.); (N.P.)
| | - Nicola Giuliani
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43125 Parma, Italy;
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (P.T.); (N.A.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (P.T.); (N.A.)
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
- Correspondence: ; Tel.: +39-02-5032-0420; Fax: +39-02-5032-0403
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (C.V.); (V.F.); (L.A.); (M.M.); (E.T.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy; (K.T.); (F.P.)
| |
Collapse
|
7
|
Niche origin of mesenchymal stem cells derived microvesicles determines opposing effects on NSCLC: Primary versus metastatic. Cell Signal 2019; 65:109456. [PMID: 31672605 DOI: 10.1016/j.cellsig.2019.109456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023]
Abstract
Novel therapeutic approaches that address the malignant cells in their stroma microenvironment are urgently needed in lung cancer. The stroma resident mesenchymal stem cells (MSCs) interact with cancer cells in diverse ways including microvesicles (MVs) that transfer proteins and RNA species thereby modulating recipient cells' phenotype. Previously, we have demonstrated that MSCs' secretome from the primary non-small cell lung cancer (NSCLC) niche (lung) and metastatic niche (bone marrow (BM)) demonstrate opposite effects on NSCLC cells in a translation initiation (TI) dependent manner. Here, we examined the effect of MVs secreted from BM-MSCs' or lung-MSCs (healthy, NSCLC) to NSCLC phenotype. Briefly, NSCLC cell lines treated with Lung or BM-MSCs' MVs were assayed for viability (WST-1), cell count/death (trypan), migration (scratch), TI status and MAPKs activation (immunoblotting). Corresponding to previous published trends, Lung-MSCs' MVs promoted NSCLC cells' assayed traits whereas, BM-MSCs' MVs suppressed them. Activation of MAPKs and autophagy was registered in lung-MSCs MVs treated NSCLC cell lines only. Furthermore, lung-MSCs' MVs' treated NSCLC cells demonstrated an early (5min) activation of MAPKs and TI factors (peIF4E/peIF4GI) not evident in BM-MSCs MVs treated cells. These observations depict a role for MSCs'-MVs in NSCLC phenotype design and display distinct differences between the primary and metastatic niches that correspond to disease progression. In conclusion, the systemic nature of MVs marks them as attractive therapeutic markers/targets and we propose that identification of specific cargoes/signals that differentiate between MSCs MVs of primary and metastatic niches may introduce fresh therapeutic approaches.
Collapse
|
8
|
Xu K, Hu X, Sun L, Liang Q, Ouyang G, Zhang Y, Mu Q, Yan X. MicroRNA-532 exerts oncogenic functions in t(4;14) multiple myeloma by targeting CAMK2N1. Hum Cell 2019; 32:529-539. [PMID: 31452083 DOI: 10.1007/s13577-019-00276-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm which is characterized by widespread genetic heterogeneity. The MMs with t(4;14) translocation exhibit poor outcomes. However, the mechanism underlying has not been well dissected. Our study aimed to identify key microRNA involved in the oncogenesis of t(4;14) MM. We here performed an integrated analysis to screen important regulators in the pathogenesis of t(4;14) MM. We used real-time quantitative polymerase chain reaction and western blotting to evaluate the mRNA and protein expression of the indicated microRNA or protein. Cell proliferation assay, colony formation assay, and transwell assay were used to examine the cell growth and metastasis. More importantly, the tumor growth and metastasis were analyzed in nude mice injected with MM cells. The integrated analysis indicated that miR-532 functioned as a pivotal regulator in t(4;14) MM. miR-532 was upregulated in t(4;14) MMs and promotes cell growth and metastasis in vitro and in vivo. Notably, though combing bioinformatics analysis and functional assays, CAMK2N1 was revealed as a functional target of miR-532 in MM cells. CAMK2N1 plays an anti-proliferative and anti-migration role in MM cells, and miR-532 exerts its oncogenic role though inhibiting CAMK2N1 expression in MMs. miR-532 promotes cell proliferation and invasion in t(4;14) MMs by targeting CAMK2N1. Our study, thus, provides possible targets for t(4;14) MM therapy.
Collapse
Affiliation(s)
- Kaihong Xu
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China.
| | - Xuezhen Hu
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Laifang Sun
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qingyue Liang
- Department of Nutrition, The Second Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Guangan, Sichuan, 638500, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Xiao Yan
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
9
|
Mei H, Xiang Y, Mei H, Fang B, Wang Q, Cao D, Hu Y, Guo T. Pterostilbene inhibits nutrient metabolism and induces apoptosis through AMPK activation in multiple myeloma cells. Int J Mol Med 2018; 42:2676-2688. [PMID: 30226553 PMCID: PMC6192759 DOI: 10.3892/ijmm.2018.3857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) cells are characterized by an abnormal nutrient metabolism that is distinct from normal plasma cells. Pterostilbene (PTE), a bioactive component of blueberries, has been demonstrated to induce apoptosis in multiple types of cancer cell. The present study evaluated whether PTE treatment affected the survival of MM cells from a metabolic perspective, and the potential mechanisms of this. It was observed that the administration of PTE induced apoptosis, which was mediated by the increased activation of AMP‑activated protein kinase (AMPK). Once activated, AMPK decreased the expression and/or activity of key lipogenic enzymes, including fatty acid synthase and acetyl‑CoA carboxylase. In addition, the activation of AMPK suppressed the downstream substrate, mechanistic target of rapamycin, which dephosphorylated eukaryotic initiation factor 4E‑binding protein 1, leading to a general decrease in mRNA translation. Pre‑treatment with the AMPK inhibitor compound C prior to PTE treatment compromised the anti‑myeloma apoptosis effect, suggesting the critical role of AMPK in mediating PTE‑induced cell toxicity. Consistent results were obtained in vivo. Finally, autophagy was adaptively upregulated subsequent to PTE treatment; the pro‑apoptotic efficacy of PTE was potentiated once autophagic flux was inhibited by 3‑methyladenine. Taken together, these data demonstrated that PTE exerts anti‑tumor effects on MM cells via AMPK‑induced nutrient suppression.
Collapse
Affiliation(s)
- Huiling Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Yu Xiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Bin Fang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Qiuguo Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Dedong Cao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022
- Correspondence to: Dr Yu Hu or Dr Tao Guo, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1,277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China, E-mail: , E-mail:
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022
- Correspondence to: Dr Yu Hu or Dr Tao Guo, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1,277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China, E-mail: , E-mail:
| |
Collapse
|
10
|
Yang WC, Lin SF, Su YC. Multiple Myeloma: Personalised Medicine Based on Pathogenesis. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10312856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma is increasingly being recognised as more than one disease, characterised by marked cytogenetic, molecular, and proliferative heterogeneity. The prognosis is widely varied, ranging from low to very high-risk, based on cytogenetic and molecular studies. Although novel agents, such as proteasome inhibitors and immunomodulators, have been developed, which have improved treatment responses and disease prognosis, multiple myeloma remains an incurable disease. Based on highly sensitive detection tools, such as gene expression profiling and next generation sequence analysis, and the understanding of the pathogenesis of multiple myeloma, many potential agents, including monoclonal antibodies, drug-conjugated antibodies, drugs targeted to molecular abnormalities, microRNA inhibitors or mimics, and immune therapies, such as chimeric antigen receptors T cells and anti-PD1 agents, can be considered personalised therapies. In this paper, multiple myeloma pathogenesis and potential molecular and immunotherapies are reviewed.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Hematology and Medical Oncology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan; School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Sheng-Fung Lin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
| | - Yu-Chieh Su
- Division of Hematology and Medical Oncology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan; School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
A compendium of long non-coding RNAs transcriptional fingerprint in multiple myeloma. Sci Rep 2018; 8:6557. [PMID: 29700321 PMCID: PMC5920050 DOI: 10.1038/s41598-018-24701-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/05/2018] [Indexed: 11/08/2022] Open
Abstract
Multiple myeloma (MM) is a clonal proliferation of bone marrow plasma cells characterized by highly heterogeneous genetic background and clinical course, whose pathogenesis remains largely unknown. Long ncRNAs (lncRNAs) are a large class of non-protein-coding RNA, involved in many physiological cellular and genomic processes as well as in carcinogenesis and tumor evolution. Although still in its infancy, the role of lncRNAs in MM is progressively expanding. Besides studies on selected candidates, lncRNAs expression at genome-wide transcriptome level is confined to microarray technologies, thus investigating a limited collection of transcripts. In the present study investigating a cohort of 30 MM patients, a deep RNA-sequencing analysis overwhelmed previous array studies and allowed the most accurate definition of lncRNA transcripts structure and expression, ultimately providing a comprehensive catalogue of lncRNAs specifically associated with the main MM molecular subgroups and genetic alterations. Despite the small number of analyzed samples, the high accuracy of RNA-sequencing approach for complex transcriptome processing led to the identification of 391 deregulated lncRNAs, 67% of which were also detectable and validated by whole-transcript microarrays. In addition, we identified a list of lncRNAs, with potential relevance in MM, co-expressed and in close proximity to genes that might undergo a cis-regulatory relationship.
Collapse
|
12
|
Canovas Nunes S, Manzoni M, Pizzi M, Mandato E, Carrino M, Quotti Tubi L, Zambello R, Adami F, Visentin A, Barilà G, Trentin L, Manni S, Neri A, Semenzato G, Piazza F. The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in multiple myeloma. Blood Cancer J 2018; 8:20. [PMID: 29440639 PMCID: PMC5811530 DOI: 10.1038/s41408-018-0053-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma is a post-germinal center B-cell neoplasm, characterized by the proliferation of malignant bone marrow plasma cells, whose survival and proliferation is sustained by growth factors and cytokines present in the bone marrow microenvironment. Among them, IL-6 triggers the signal downstream of its receptor, leading to the activation of the JAK/STAT pathway. The atypical GTPase RhoU lays downstream of STAT3 transcription factor and could be responsible for mediating its effects on cytoskeleton dynamics. Here we demonstrate that RHOU is heterogeneously expressed in primary multiple myeloma cells and significantly modulated with disease progression. At the mRNA level, RHOU expression in myeloma patients correlated with the expression of STAT3 and its targets MIR21 and SOCS3. Also, IL-6 stimulation of human myeloma cell lines up-regulated RHOU through STAT3 activation. On the other hand, RhoU silencing led to a decrease in cell migration with the accumulation of actin stress fibers, together with a decrease in cyclin D2 expression and in cell cycle progression. Furthermore, we found that even though lenalidomide positively regulated RhoU expression leading to higher cell migration rates, it actually led to cell cycle arrest probably through a p21 dependent mechanism. Lenalidomide treatment in combination with RhoU silencing determined a loss of cytoskeletal organization inhibiting cell migration, and a further increase in the percentage of cells in a resting phase. These results unravel a role for RhoU not only in regulating the migratory features of malignant plasma cells, but also in controlling cell cycle progression.
Collapse
Affiliation(s)
- Sara Canovas Nunes
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Martina Manzoni
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marilena Carrino
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Renato Zambello
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Fausto Adami
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Andrea Visentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy. .,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
13
|
Ronchetti D, Agnelli L, Taiana E, Galletti S, Manzoni M, Todoerti K, Musto P, Strozzi F, Neri A. Distinct lncRNA transcriptional fingerprints characterize progressive stages of multiple myeloma. Oncotarget 2018; 7:14814-30. [PMID: 26895470 PMCID: PMC4924754 DOI: 10.18632/oncotarget.7442] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/29/2016] [Indexed: 12/25/2022] Open
Abstract
Although many efforts have recently contributed to improve our knowledge of molecular pathogenesis of multiple myeloma (MM), the role and significance of long non-coding RNAs (lncRNAs) in plasma cells (PC) malignancies remains virtually absent. To this aim, we developed a custom annotation pipeline of microarray data investigating lncRNA expression in PCs from 20 monoclonal gammopathies of undetermined significance, 33 smoldering MM, 170 MM, and 36 extra-medullary MMs/plasma cell leukemia patients, and 9 healthy donors. Our study identified 31 lncRNAs deregulated in tumor samples compared to normal controls; among these, the upregulation of MALAT1 appeared associated in MM patients with molecular pathways involving cell cycle regulation, p53-mediated DNA damage response, and mRNA maturation processes. Furthermore, we found 21 lncRNAs whose expression were progressively deregulated trough the more aggressive stages of PC dyscrasia, suggesting a possible role in the progression of the disease. Finally, in the context of molecular heterogeneity of MM, we identified a transcriptional fingerprint in hyperdiploid patients, characterized by the upregulation of lncRNAs/pseudogenes related to ribosomal protein genes, known to be upregulated in this molecular group. Overall, the data provides an important resource for future studies on the functions of lncRNAs in the pathology.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Galletti
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Manzoni
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Pellegrino Musto
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | | | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
14
|
Manni S, Carrino M, Manzoni M, Gianesin K, Nunes SC, Costacurta M, Tubi LQ, Macaccaro P, Taiana E, Cabrelle A, Barilà G, Martines A, Zambello R, Bonaldi L, Trentin L, Neri A, Semenzato G, Piazza F. Inactivation of CK1α in multiple myeloma empowers drug cytotoxicity by affecting AKT and β-catenin survival signaling pathways. Oncotarget 2017; 8:14604-14619. [PMID: 28099937 PMCID: PMC5362429 DOI: 10.18632/oncotarget.14654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/07/2017] [Indexed: 11/25/2022] Open
Abstract
Recent evidence indicates that protein kinase CK1α may support the growth of multiple myeloma (MM) plasma cells. Here, by analyzing a large cohort of MM cases, we found that high CK1α mRNA levels are virtually associated with all MM patients. Moreover, we provided functional evidence that CK1α activity is essential for malignant plasma cell survival even in the protective niche generated by co-cultures with bone marrow stromal cells. We demonstrated that CK1α inactivation, while toxic for myeloma cells, is dispensable for the survival of healthy B lymphocytes and stromal cells. Disruption of CK1α function in myeloma cells resulted in decreased Mdm2, increased p53 and p21 and reduced expression of β-catenin and AKT. These effects were mediated partially by p53 and caspase activity. Finally, we discovered that CK1α inactivation enhanced the cytotoxic effect of both bortezomib and lenalidomide. Overall, our study supports a role for CK1α as a potential therapeutic target in MM in combination with proteasome inhibitors and/or immunomodulatory drugs.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marilena Carrino
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Martina Manzoni
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Ketty Gianesin
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Sara Canovas Nunes
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Matteo Costacurta
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Paolo Macaccaro
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Cabrelle
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Annalisa Martines
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS- Padova, Italy
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Bonaldi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS- Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
15
|
Shen X, Ye Y, Qi J, Shi W, Wu X, Ni H, Cong H, Ju S. Identification of a novel microRNA, miR-4449, as a potential blood based marker in multiple myeloma. Clin Chem Lab Med 2017; 55:748-754. [PMID: 27155004 DOI: 10.1515/cclm-2015-1108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/04/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND miRNAs act in diverse biological processes including development, cell growth, apoptosis, and hematopoiesis, suggesting their role in cancer. METHODS We examined the miRNAs perturbed in CD138+ primary multiple myeloma (MM) cells, using microarray analysis and real-time quantitative PCR (RT-qPCR). Serum miR-4449 expression levels were detected from 71 primary MM patients and 46 healthy controls by RT-qPCR. RESULTS Our analysis revealed up-regulation of 54 and down-regulation of 28 miRNAs in MM subjects compared to healthy controls. miR-4449 has not been reported in MM. It was found that the relative expression of bone marrow miR-4449 in MM patients (2.14±1.42) was higher than that in healthy controls (0.815±0.165) (U=8, p=0.0093). The relative expression of serum miR-4449 in MM patients (2.11±2.10) was significantly higher than that in healthy controls (0.357±0.235) (U=374, p<0.0001) and was significantly correlated with β2M, λ light and κ light chain concentration (r=0.480, p=0.0003; r=0.560, p<0.0001; r=0.560, p<0.0001), but not correlated with the lactate dehydrogenase (LDH) concentration (r=0.247, p=0.0611). The area under the curve (AUC) of the receiver-operating characteristics (ROC) curve of serum miR-4449 was 0.885 (95% CI, 0.826-0.945), which is higher than for other markers. Combining miR-4449, λ light chain, and β2M together, the sensitivity was highest compared with λ light chain or β2M alone, or combined. CONCLUSIONS The expression levels of serum miR-4449 in MM patients were significantly higher than in healthy controls, suggesting that it may prove to be useful in the auxiliary diagnosis of MM.
Collapse
Affiliation(s)
- Xianjuan Shen
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Yan Ye
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Jing Qi
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Wei Shi
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Xinhua Wu
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Hongbing Ni
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Hui Cong
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P.R
| |
Collapse
|
16
|
Ronchetti D, Manzoni M, Todoerti K, Neri A, Agnelli L. In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma. Genes (Basel) 2016; 7:E107. [PMID: 27916857 PMCID: PMC5192483 DOI: 10.3390/genes7120107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNA (ceRNA) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed a significant correlation between lncRNA and miRNA expression levels, we identified 11 lncRNA-miRNA relationships suggestive of a novel ceRNA network with relevance in MM.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milano, 20122 Milan, Italy.
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Martina Manzoni
- Department of Oncology and Hemato-Oncology, University of Milano, 20122 Milan, Italy.
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy.
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milano, 20122 Milan, Italy.
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milano, 20122 Milan, Italy.
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| |
Collapse
|
17
|
Attar-Schneider O, Drucker L, Gottfried M. Migration and epithelial-to-mesenchymal transition of lung cancer can be targeted via translation initiation factors eIF4E and eIF4GI. J Transl Med 2016; 96:1004-15. [PMID: 27501049 DOI: 10.1038/labinvest.2016.77] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis underlies cancer morbidity and accounts for disease progression and significant death rates generally and in non-small cell lung cancer (NSCLC) particularly. Therefore, it is critically important to understand the molecular events that regulate metastasis. Accumulating data portray a central role for protein synthesis, particularly translation initiation (TI) factors eIF4E and eIF4G in tumorigenesis and patients' survival. We have published that eIF4E/eIF4GI activities and consequently NSCLC cell migration are modulated by bone-marrow mesenchymal stem cell secretomes, suggesting a role for TI in metastasis. Here, we aimed to expand our understanding of the TI factors significance to NSCLC characteristics, particularly epithelial-to-mesenchymal transition (EMT) and migration, supportive of metastasis. In a model of NSCLC cell lines (H1299, H460), we inhibited eIF4E/eIF4GI's expressions (siRNA, ribavirin) and assessed NSCLC cell lines' migration (scratch), differentiation (EMT, immunoblotting), and expression of select microRNAs (qPCR). Initially, we determined an overexpression of several TI factors (eIF4E, eIF4GI, eIF4B, and DHX29) and their respective targets in NSCLC compared with normal lung samples (70-350%↑, P<0.05). Knockdown (KD) of eIF4E/eIF4GI in NSCLC cell lines (70%↓, P<0.05) also manifested in decreased target levels (ERα, SMAD5, NFkB, CyclinD1, c-MYC, and HIF1α) (20-50%↓, P<0.05). eIF4E/eIF4GI KD also attenuated cell migration (60-75%↓, P<0.05), EMT promoters (15-90%↓, P<0.05), and enhanced EMT suppressors (30-380%↑, P<0.05). The importance of eIF4E KD to NSCLC phenotype was further corroborated with its inhibitor, ribavirin. Changes in expression of essential microRNAs implicated in NSCLC cell migration concluded the study (20-100%, P<0.05). In summary, targeting eIF4E/eIF4GI reduces migration and EMT, both essential for metastasis, thereby underscoring the potential of TI targeting in NSCLC therapy, especially the already clinically employed agents (ribavirin/4EGI). Comparison of these findings with previously reported effects of eIF4E/eIF4GI KD in multiple myeloma suggests a collective role for these TI factors in cancer progression.
Collapse
Affiliation(s)
- Oshrat Attar-Schneider
- Lung Cancer Research Laboratory, Lung Cancer Unit, Meir Medical Center, Kfar Saba, Israel.,Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Gottfried
- Lung Cancer Research Laboratory, Lung Cancer Unit, Meir Medical Center, Kfar Saba, Israel.,Oncology Department, Lung Cancer Unit, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Lionetti M, Barbieri M, Todoerti K, Agnelli L, Marzorati S, Fabris S, Ciceri G, Galletti S, Milesi G, Manzoni M, Mazzoni M, Greco A, Tonon G, Musto P, Baldini L, Neri A. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation. Oncotarget 2016; 6:24205-17. [PMID: 26090869 PMCID: PMC4695180 DOI: 10.18632/oncotarget.4434] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a clinically and genetically heterogeneous plasma cell (PC) malignancy. Whole-exome sequencing has identified therapeutically targetable mutations such as those in the mitogen-activated protein kinase (MAPK) pathway, which are the most prevalent MM mutations. We used deep sequencing to screen 167 representative patients with PC dyscrasias [132 with MM, 24 with primary PC leukemia (pPCL) and 11 with secondary PC leukemia (sPCL)] for mutations in BRAF, NRAS and KRAS, which were respectively found in 12%, 23.9% and 29.3% of cases. Overall, the MAPK pathway was affected in 57.5% of the patients (63.6% of those with sPCL, 59.8% of those with MM, and 41.7% of those with pPCL). The majority of BRAF variants were comparably expressed at transcript level. Additionally, gene expression profiling indicated the MAPK pathway is activated in mutated patients. Finally, we found that vemurafenib inhibition of BRAF activation in mutated U266 cells affected the expression of genes known to be associated with MM. Our data confirm and extend previous published evidence that MAPK pathway activation is recurrent in myeloma; the finding that it is mediated by BRAF mutations in a significant fraction of patients has potentially immediate clinical implications.
Collapse
Affiliation(s)
- Marta Lionetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marzia Barbieri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Luca Agnelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Simona Marzorati
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriella Ciceri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Serena Galletti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Milesi
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Manzoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mara Mazzoni
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Greco
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Pellegrino Musto
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Luca Baldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
19
|
A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget 2016; 6:26129-41. [PMID: 26305418 PMCID: PMC4694891 DOI: 10.18632/oncotarget.4674] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
DIS3 is a catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) domains, recently found mutated in multiple myeloma (MM), a clinically and genetically heterogeneous form of plasma cell (PC) dyscrasia. We analyzed by next-generation sequencing (NGS) the DIS3 PIN and RNB domains in purified bone marrow PCs from 164 representative patients, including 130 cases with MM, 24 with primary PC leukemia and 10 with secondary PC leukemia. DIS3 mutations were found respectively in 18.5%, 25% and 30% of cases. Identified variants were predominantly missense mutations localized in the RNB domain, and were often detected at low allele frequency. DIS3 mutations were preferentially carried by IGH-translocated/nonhyperdiploid patients. Sequential analysis at diagnosis and relapse in a subset of cases highlighted some instances of increasing DIS3 mutation burden during disease progression. NGS also revealed that the majority of DIS3 variants in mutated cases were comparably detectable at transcriptional level. Furthermore, gene expression profiling analysis in DIS3-mutated patients identified a transcriptional signature suggestive for impaired RNA exosome function. In conclusion, these data further support the pathological relevance of DIS3 mutations in plasma cell dyscrasias and suggest that DIS3 may represent a potential tumor suppressor gene in such disorders.
Collapse
|
20
|
Integrated analysis of microRNAs, transcription factors and target genes expression discloses a specific molecular architecture of hyperdiploid multiple myeloma. Oncotarget 2016; 6:19132-47. [PMID: 26056083 PMCID: PMC4662480 DOI: 10.18632/oncotarget.4302] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple Myeloma (MM) is a malignancy characterized by the hyperdiploid (HD-MM) and the non-hyperdiploid (nHD-MM) subtypes. To shed light within the molecular architecture of these subtypes, we used a novel integromics approach. By annotated MM patient mRNA/microRNA (miRNA) datasets, we investigated mRNAs and miRNAs profiles with relation to changes in transcriptional regulators expression. We found that HD-MM displays specific gene and miRNA expression profiles, involving the Signal Transducer and Activator of Transcription (STAT)3 pathway as well as the Transforming Growth Factor–beta (TGFβ) and the transcription regulator Nuclear Protein-1 (NUPR1). Our data define specific molecular features of HD-MM that may translate in the identification of novel relevant druggable targets.
Collapse
|
21
|
Dabbah M, Attar-Schneider O, Zismanov V, Tartakover Matalon S, Lishner M, Drucker L. Multiple myeloma cells promote migration of bone marrow mesenchymal stem cells by altering their translation initiation. J Leukoc Biol 2016; 100:761-770. [DOI: 10.1189/jlb.3a1115-510rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/26/2016] [Indexed: 12/26/2022] Open
|
22
|
Shen X, Guo Y, Qi J, Shi W, Wu X, Ju S. Binding of B-cell maturation antigen to B-cell activating factor induces survival of multiple myeloma cells by activating Akt and JNK signaling pathways. Cell Biochem Funct 2016; 34:104-10. [PMID: 26914861 DOI: 10.1002/cbf.3169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Xianjuan Shen
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | | | - Jing Qi
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Wei Shi
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Xinhua Wu
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Shaoqing Ju
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
- Nantong University; Nantong China
- Laboratory Medicine Center; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
23
|
Di Martino MT, Arbitrio M, Guzzi PH, Cannataro M, Tagliaferri P, Tassone P. Experimental treatment of multiple myeloma in the era of precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1142356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Fernando RC, de Carvalho F, Mazzotti DR, Evangelista AF, Braga WMT, de Lourdes Chauffaille M, Leme AFP, Colleoni GWB. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets. Genes Cancer 2016; 6:462-471. [PMID: 26807199 PMCID: PMC4701225 DOI: 10.18632/genesandcancer.88] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings.
Collapse
Affiliation(s)
- Rodrigo Carlini Fernando
- Departamento de Oncologia Clínica e Experimental, Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Fabricio de Carvalho
- Departamento de Oncologia Clínica e Experimental, Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Diego Robles Mazzotti
- Departamento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | | - Walter Moisés Tobias Braga
- Departamento de Oncologia Clínica e Experimental, Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Maria de Lourdes Chauffaille
- Departamento de Oncologia Clínica e Experimental, Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Adriana Franco Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Conselho Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, Brazil
| | - Gisele Wally Braga Colleoni
- Departamento de Oncologia Clínica e Experimental, Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
25
|
Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumour Biol 2015; 37:4755-65. [PMID: 26515338 DOI: 10.1007/s13277-015-4304-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related death worldwide. Patients presenting with advanced-stage NSCLC have poor prognosis, while metastatic spread accounts for >70 % of patient's deaths. The major advances in the treatment of lung cancer have brought only minor improvements in survival; therefore, novel strategic treatment approaches are urgently needed. Accumulating data allocate a central role for the cancer microenvironment including mesenchymal stem cells (MSCs) in acquisition of drug resistance and disease relapse. Furthermore, studies indicate that translation initiation factors are over expressed in NSCLC and negatively impact its prognosis. Importantly, translation initiation is highly modulated by microenvironmental cues. Therefore, we decided to examine the effect of bone marrow MSCs (BM-MSCs) from normal donors on NSCLC cell lines with special emphasis on translation initiation mechanism in the crosstalk. We cultured NSCLC cell lines with BM-MSC conditioned media (i.e., secretome) and showed deleterious effects on the cells' proliferation, viability, death, and migration. We also demonstrated reduced levels of translation initiation factors implicated in cancer progression [eukaryotic translation initiation factor 4E (eIF4E) and eukaryotic translation initiation factor 4GI (eIF4GI)], their targets, and regulators. Finally, we outlined a mechanism by which BM-MSCs' secretome affected NSCLC's mitogen-activated protein kinase (MAPK) signaling pathway, downregulated the cell migration, and diminished translation initiation factors' levels. Taken together, our study demonstrates that there is direct dialogue between the BM-MSCs' secretome and NSCLC cells that manipulates translation initiation and critically affects cell fate. We suggest that therapeutic approach that will sabotage this dialogue, especially in the BM microenvironment, may diminish lung cancer metastatic spread and morbidity and improve the patient's life quality.
Collapse
|
26
|
Attar-Schneider O, Zismanov V, Dabbah M, Tartakover-Matalon S, Drucker L, Lishner M. Multiple myeloma and bone marrow mesenchymal stem cells' crosstalk: Effect on translation initiation. Mol Carcinog 2015; 55:1343-54. [PMID: 26293751 DOI: 10.1002/mc.22378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) malignant plasma cells reside in the bone marrow (BM) and convert it into a specialized pre-neoplastic niche that promotes the proliferation and survival of the cancer cells. BM resident mesenchymal stem cells (BM-MSCs) are altered in MM and in vitro studies indicate their transformation by MM proximity is within hours. The response time frame suggested that protein translation may be implicated. Thus, we assembled a co-culture model of MM cell lines with MSCs from normal donors (ND) and MM patients to test our hypothesis. The cell lines (U266, ARP-1) and BM-MSCs (ND, MM) were harvested separately after 72 h of co-culture and assayed for proliferation, death, levels of major translation initiation factors (eIF4E, eIF4GI), their targets, and regulators. Significant changes were observed: BM-MSCs (ND and MM) co-cultured with MM cell lines displayed elevated proliferation and death as well as increased expression/activity of eIF4E/eIF4GI; MM cell lines co-cultured with MM-MSCs also displayed higher proliferation and death rates coupled with augmented translation initiation factors; in contrast, MM cell lines co-cultured with ND-MSCs did not display elevated proliferation only death and had no changes in eIF4GI levels/activity. eIF4E expression was increased in one of the cell lines. Our study demonstrates that there is direct dialogue between the MM and BM-MSCs populations that includes translation initiation manipulation and critically affects cell fate. Future research should be aimed at identifying therapeutic targets that may be used to minimize the collateral damage to the cancer microenvironment and limit its recruitment into the malignant process. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Oshrat Attar-Schneider
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Zismanov
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mahmoud Dabbah
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover-Matalon
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Internal Medicine, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
27
|
ZISMANOV VICTORIA, ATTAR-SCHNEIDER OSHRAT, LISHNER MICHAEL, AIZENFELD RACHELHEFFEZ, MATALON SHELLYTARTAKOVER, DRUCKER LIAT. Multiple myeloma proteostasis can be targeted via translation initiation factor eIF4E. Int J Oncol 2014; 46:860-70. [DOI: 10.3892/ijo.2014.2774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/11/2014] [Indexed: 11/06/2022] Open
|
28
|
Abstract
Multiple myeloma (MM) is a heterogeneous disease that, over the past 15 years, has seen an increased understanding of its biology and of novel therapeutic options. Distinctive subtypes of the disease have been described, each with different outcomes and clinic-pathological features. Even though a detailed classification of MM into at least seven or eight major subtypes is possible, a more practical clinical approach can classify the disease into high-risk and non-high-risk MM. Such classification has permitted a more personalized approach to the management of the disease. Additionally, risk stratification should be included in outcome discussions with patients, as survival differs significantly by high-risk status. Nowadays, test for risk stratification are widely available and can be routinely used in the clinic. A greater understanding of the genetic abnormalities underlying the biology of MM will allow for the development of novel targeted therapies and better prognostic markers of the disease.
Collapse
Affiliation(s)
- Rafael Fonseca
- Department of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ 85259-5494, USA
| | | | | |
Collapse
|
29
|
Attar-Schneider O, Drucker L, Zismanov V, Tartakover-Matalon S, Lishner M. Targeting eIF4GI translation initiation factor affords an attractive therapeutic strategy in multiple myeloma. Cell Signal 2014; 26:1878-87. [DOI: 10.1016/j.cellsig.2014.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
|
30
|
Bochtler T, Hegenbart U, Kunz C, Benner A, Seckinger A, Dietrich S, Granzow M, Neben K, Goldschmidt H, Ho AD, Hose D, Jauch A, Schönland SO. Gain of chromosome 1q21 is an independent adverse prognostic factor in light chain amyloidosis patients treated with melphalan/dexamethasone. Amyloid 2014; 21:9-17. [PMID: 24455967 DOI: 10.3109/13506129.2013.854766] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chromosomal aberrations of plasma cells are well established pathogenetic and prognostic factors in multiple myeloma, but their prognostic implication in systemic light chain (AL) amyloidosis is unclear. Therefore, the aim of this study was to identify prognostic cytogenetic risk factors by interphase FISH in a series of 103 consecutive AL amyloidosis patients treated uniformly with melphalan/dexamethasone as first-line therapy. Detection of gain of 1q21 was predictive for a poor overall survival (OS) (median 12.5 versus 38.2 months, p = 0.002). Hematologic event free survival (hem EFS) for gain of 1q21 was 5.0 versus 8.5 months in median (p = 0.08) and haematologic remission rates (≥VGPR) after three cycles were 5% versus 25% (p = 0.06). Most important, in multivariate concordance analyses the adverse prognosis carried by gain of 1q21 was retained as an independent prognostic factor (OS: p = 0.003, average hazard ratio (AHR) = 3.64, hemEFS: p = 0.008, AHR = 2.35), along with the well established Mayo cardiac staging. Patients with t(11;14) had a longer median OS with 38.2 months versus 17.5 months, though no statistical significance was reached. Deletion 13q14 and hyperdiploidy turned out to be prognostically neutral. In conclusion, we have identified gain of 1q21 as an independent adverse prognostic factor in AL amyloidosis patients treated with standard chemotherapy.
Collapse
Affiliation(s)
- Tilmann Bochtler
- Amyloidosis Center, Department of Internal Medicine, University of Heidelberg , Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Samur MK, Shah PK, Wang X, Minvielle S, Magrangeas F, Avet-Loiseau H, Munshi NC, Li C. The shaping and functional consequences of the dosage effect landscape in multiple myeloma. BMC Genomics 2013; 14:672. [PMID: 24088394 PMCID: PMC3907079 DOI: 10.1186/1471-2164-14-672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/30/2013] [Indexed: 02/06/2023] Open
Abstract
Background Multiple myeloma (MM) is a malignant proliferation of plasma B cells. Based on recurrent aneuploidy such as copy number alterations (CNAs), myeloma is divided into two subtypes with different CNA patterns and patient survival outcomes. How aneuploidy events arise, and whether they contribute to cancer cell evolution are actively studied. The large amount of transcriptomic changes resultant of CNAs (dosage effect) pose big challenges for identifying functional consequences of CNAs in myeloma in terms of specific driver genes and pathways. In this study, we hypothesize that gene-wise dosage effect varies as a result from complex regulatory networks that translate the impact of CNAs to gene expression, and studying this variation can provide insights into functional effects of CNAs. Results We propose gene-wise dosage effect score and genome-wide karyotype plot as tools to measure and visualize concordant copy number and expression changes across cancer samples. We find that dosage effect in myeloma is widespread yet variable, and it is correlated with gene expression level and CNA frequencies in different chromosomes. Our analysis suggests that despite the enrichment of differentially expressed genes between hyperdiploid MM and non-hyperdiploid MM in the trisomy chromosomes, the chromosomal proportion of dosage sensitive genes is higher in the non-trisomy chromosomes. Dosage-sensitive genes are enriched by genes with protein translation and localization functions, and dosage resistant genes are enriched by apoptosis genes. These results point to future studies on differential dosage sensitivity and resistance of pro- and anti-proliferation pathways and their variation across patients as therapeutic targets and prognosis markers. Conclusions Our findings support the hypothesis that recurrent CNAs in myeloma are selected by their functional consequences. The novel dosage effect score defined in this work will facilitate integration of copy number and expression data for identifying driver genes in cancer genomics studies. The accompanying R code is available at http://www.canevolve.org/dosageEffect/.
Collapse
Affiliation(s)
- Mehmet K Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Morabito F, Mosca L, Cutrona G, Agnelli L, Tuana G, Ferracin M, Zagatti B, Lionetti M, Fabris S, Maura F, Matis S, Gentile M, Vigna E, Colombo M, Massucco C, Recchia AG, Bossio S, De Stefano L, Ilariucci F, Musolino C, Molica S, Di Raimondo F, Cortelezzi A, Tassone P, Negrini M, Monti S, Rossi D, Gaidano G, Ferrarini M, Neri A. Clinical monoclonal B lymphocytosis versus Rai 0 chronic lymphocytic leukemia: A comparison of cellular, cytogenetic, molecular, and clinical features. Clin Cancer Res 2013; 19:5890-900. [PMID: 24036852 DOI: 10.1158/1078-0432.ccr-13-0622] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the incidence and clinical relevance of classic and new prognostic markers, IGHV gene mutational status, and chromosomal abnormalities in clinical monoclonal B lymphocytosis (cMBL) compared with Rai stage 0 chronic lymphocytic leukemia (Rai0-CLL). EXPERIMENTAL DESIGN A group of 136 patients with cMBL and a group of 216 Rai0-CLL cases were investigated prospectively. RESULTS IGHV-mutated cases were significantly more frequent among cMBLs (P = 0.005), whereas the distribution of CD38 and ZAP-70 positive cases, of patients with NOTCH1 and SF3B1 mutations or exhibiting the major CLL cytogenetic abnormalities, was similar in the two groups. Moreover, no significant differences were found either in IGHV/IGHD/IGHJ gene usage or in the overall prevalence of stereotyped IGHV gene sequences. Cells from cMBL and Rai0-CLL exhibited similar gene and microRNA (miRNA) signatures; in addition, when grouped according to the IGHV mutational status, IGHV-unmutated cases showed different transcriptional signatures compared with IGHV-mutated patients, irrespective of the cMBL or Rai0-CLL classification. cMBL diagnosis per se was predictive of longer progression-free survival. CONCLUSIONS Our study based on a prospective series of patients indicates that no major differences exist between the circulating cells from cMBL and Rai0-CLL, at least based on a comparison of the markers used in the study. This possibly suggests that the two conditions mainly differ in the initial size of the monoclonal cell population, which may influence the subsequent timing of clonal expansion and clinical manifestations.
Collapse
Affiliation(s)
- Fortunato Morabito
- Authors' Affiliations: Department of Onco-Hematology, A.O. of Cosenza, Cosenza; Department of Clinical Sciences and Community Health, University of Milano and Hematology 1 CTMO, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano; SS Molecular Diagnostics, Scientific Direction, and Direzione Scientifica, IRCCS, San Martino IST, Genoa; Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara; Division of Hematology, A.O. Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia; Division of Hematology, University of Messina, Messina; Department of Oncology and Hematology, Pugliese-Ciaccio Hospital; University of Magna Graecia and Cancer Center, Catanzaro; Division of Hematology, Department of Biomedical Sciences, University of Catania and Ferrarotto Hospital, Catania; and Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Transcription factor-pathway coexpression analysis reveals cooperation between SP1 and ESR1 on dysregulating cell cycle arrest in non-hyperdiploid multiple myeloma. Leukemia 2013; 28:894-903. [PMID: 23925045 PMCID: PMC4155324 DOI: 10.1038/leu.2013.233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
Abstract
Multiple myeloma is a hematological cancer of plasma B-cells and remains incurable. Two major subtypes of myeloma, hyperdiploid (HMM) and non-hyperdiploid myeloma (NHMM), have distinct chromosomal alterations and different survival outcomes. Transcription factors (TrFs) have been implicated in myeloma oncogenesis but their dysregulation in myeloma subtypes are less studied. Here we develop a TrF-pathway co-expression analysis to identify altered co-expression between two sample types. We apply the method to the two myeloma subtypes and the cell cycle arrest pathway, which is significantly differentially expressed between the two subtypes. We find that TrFs MYC, NF-κB and HOXA9 have significantly lower co-expression with cell cycle arrest in HMM, co-occurring with their over-activation in HMM. In contrast, TrFs ESR1, SP1 and E2F1 have significantly lower co-expression with cell cycle arrest in NHMM. SP1 ChIP targets are enriched by cell cycle arrest genes. These results motivate a cooperation model of ESR1 and SP1 in regulating cell cycle arrest, and a hypothesis that their over-activation in NHMM disrupts proper regulation of cell cycle arrest. Co-targeting ESR1 and SP1 shows a synergistic effect on inhibiting myeloma proliferation in NHMM cell lines. Therefore, studying TrF-pathway co-expression dysregulation in human cancers facilitates forming novel hypotheses towards clinical utility.
Collapse
|
35
|
Agnelli L, Tassone P, Neri A. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing. Expert Opin Biol Ther 2013; 13 Suppl 1:S55-68. [PMID: 23614397 DOI: 10.1517/14712598.2013.793305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Multiple myeloma is a fatal malignant proliferation of clonal bone marrow Ig-secreting plasma cells, characterized by wide clinical, biological, and molecular heterogeneity. AREAS COVERED Herein, global gene and microRNA expression, genome-wide DNA profilings, and next-generation sequencing technology used to investigate the genomic alterations underlying the bio-clinical heterogeneity in multiple myeloma are discussed. EXPERT OPINION High-throughput technologies have undoubtedly allowed a better comprehension of the molecular basis of the disease, a fine stratification, and early identification of high-risk patients, and have provided insights toward targeted therapy studies. However, such technologies are at risk of being affected by laboratory- or cohort-specific biases, and are moreover influenced by high number of expected false positives. This aspect has a major weight in myeloma, which is characterized by large molecular heterogeneity. Therefore, meta-analysis as well as multiple approaches are desirable if not mandatory to validate the results obtained, in line with commonly accepted recommendation for tumor diagnostic/prognostic biomarker studies.
Collapse
Affiliation(s)
- Luca Agnelli
- University of Milan, Department of Clinical Sciences and Community Health, F. Sforza, 35 - 20122 Milan, Italy
| | | | | |
Collapse
|
36
|
Todoerti K, Agnelli L, Fabris S, Lionetti M, Tuana G, Mosca L, Lombardi L, Grieco V, Bianchino G, D'Auria F, Statuto T, Mazzoccoli C, De Luca L, Petrucci MT, Morabito F, Offidani M, Di Raimondo F, Falcone A, Omede' P, Tassone P, Boccadoro M, Palumbo A, Neri A, Musto P. Transcriptional Characterization of a Prospective Series of Primary Plasma Cell Leukemia Revealed Signatures Associated with Tumor Progression and Poorer Outcome. Clin Cancer Res 2013; 19:3247-58. [DOI: 10.1158/1078-0432.ccr-12-3461] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Li Y, Wang X, Zheng H, Wang C, Minvielle S, Magrangeas F, Avet-Loiseau H, Shah PK, Zhang Y, Munshi NC, Li C. Classify hyperdiploidy status of multiple myeloma patients using gene expression profiles. PLoS One 2013; 8:e58809. [PMID: 23554930 PMCID: PMC3598955 DOI: 10.1371/journal.pone.0058809] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/07/2013] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a cancer of antibody-making plasma cells. It frequently harbors alterations in DNA and chromosome copy numbers, and can be divided into two major subtypes, hyperdiploid (HMM) and non-hyperdiploid multiple myeloma (NHMM). The two subtypes have different survival prognosis, possibly due to different but converging paths to oncogenesis. Existing methods for identifying the two subtypes are fluorescence in situ hybridization (FISH) and copy number microarrays, with increased cost and sample requirements. We hypothesize that chromosome alterations have their imprint in gene expression through dosage effect. Using five MM expression datasets that have HMM status measured by FISH and copy number microarrays, we have developed and validated a K-nearest-neighbor method to classify MM into HMM and NHMM based on gene expression profiles. Classification accuracy for test datasets ranges from 0.83 to 0.88. This classification will enable researchers to study differences and commonalities of the two MM subtypes in disease biology and prognosis using expression datasets without need for additional subtype measurements. Our study also supports the advantages of using cancer specific characteristics in feature design and pooling multiple rounds of classification results to improve accuracy. We provide R source code and processed datasets at www.ChengLiLab.org/software.
Collapse
Affiliation(s)
- Yingxiang Li
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xujun Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Haiyang Zheng
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chengyang Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Stéphane Minvielle
- Inserm UMR892, CNRS 6299, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Florence Magrangeas
- Inserm UMR892, CNRS 6299, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Hervé Avet-Loiseau
- Inserm UMR892, CNRS 6299, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Parantu K. Shah
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Yong Zhang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, and Boston VA Healthcare System, Boston, Massachusetts, United States of America
| | - Cheng Li
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Uncovering the biology of multiple myeloma among African Americans: a comprehensive genomics approach. Blood 2013; 121:3147-52. [PMID: 23422747 DOI: 10.1182/blood-2012-07-443606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemiological data have suggested that African American (AA) persons are twice as likely to be diagnosed with multiple myeloma (MM) compared with European American (EA) persons. Here, we have analyzed a set of cytogenetic and genomic data derived from AA and EA MM patients. We have compared the frequency of IgH translocations in a series of data from 115 AA patients from 3 studies and 353 EA patients from the Eastern Cooperative Oncology Group (ECOG) studies E4A03 and E9487. We have also interrogated tumors from 45 AA and 196 EA MM patients for somatic copy number abnormalities associated with poor outcome. In addition, 35 AA and 178 EA patients were investigated for a transcriptional profile associated with high-risk disease. Overall, based on this cohort, genetic profiles were similar except for a significantly lower frequency of IgH translocations (40% vs 52%; P = .032) in AA patients. Frequency differences of somatic copy number aberrations were not significant after correction for multiple testing. There was also no significant difference in the frequency of high-risk disease based on gene expression profiling. Our study represents the first comprehensive comparisons of the frequency and distribution of molecular alterations in MM tumors between AA and EA patients. ECOG E4A03 is registered with ClinicalTrials.gov, number NCT00098475. ECOG E9487 is a companion validation set to the ECOG study E9486 and is registered with the National Institutes of Health, National Cancer Institute, Clinical Trials (PDQ), number EST-9486.
Collapse
|
39
|
Mosca L, Musto P, Todoerti K, Barbieri M, Agnelli L, Fabris S, Tuana G, Lionetti M, Bonaparte E, Sirchia SM, Grieco V, Bianchino G, D'Auria F, Statuto T, Mazzoccoli C, De Luca L, Petrucci MT, Morabito F, Offidani M, Di Raimondo F, Falcone A, Caravita T, Omedè P, Boccadoro M, Palumbo A, Neri A. Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles. Am J Hematol 2013; 88:16-23. [PMID: 23044976 DOI: 10.1002/ajh.23339] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/02/2023]
Abstract
Primary plasma cell leukemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, distinct from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing multiple myeloma (MM). Herein, we performed a comprehensive molecular analysis of a prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequent numerical alterations involved 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%), and 17p (35%). We identified a minimal biallelic deletion (1.5 Mb) in 8p21.2 encompassing the PPP2R2A gene, belonging to a family of putative tumor suppressors and found to be significantly down-regulated in deleted cases. Mutations of TP53 were identified in four cases, all but one associated with a monoallelic deletion of the gene, whereas activating mutations of the BRAF oncogene occurred in one case and were absent in N- and K-RAS. To evaluate the influence of allelic imbalances in transcriptional expression we performed an integrated genomic analysis with GEP data, showing a significant dosage effect of genes involved in transcription, translation, methyltransferase activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we provide a compendium of genomic alterations in a prospective series of pPCLs which may contribute to improve our understanding of the pathogenesis of this aggressive form of plasma cell dyscrasia and the mechanisms of tumor progression in MM.
Collapse
Affiliation(s)
- Laura Mosca
- Department of Clinical Sciences and Community Health, University of Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chung TH, Chng WJ. Clinical utility and implementation of gene-expression profiling in myeloma: current status and challenges. Int J Hematol Oncol 2012. [DOI: 10.2217/ijh.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Multiple myeloma, a neoplasm of terminally differentiated plasma cell, is the second most frequent hematological malignancy after non-Hodgkin’s lymphoma. Gene-expression profiling is a powerful and sensitive tool that can detect global transcriptional changes in cells. This technology has been applied in myeloma studies in the last decade in diverse areas such as understanding molecular pathogenesis, role of microenvironment, molecular heterogeneity, prognosis prediction and identification of novel therapeutic targets. In this review, we will briefly retrace the achievements and consider the future perspectives of gene-expression profiling in multiple myeloma research.
Collapse
Affiliation(s)
- Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology–Oncology, National University Cancer Institute of Singapore, National University Health System, NUHS Tower Block, Level 7, 1E Lower Kent Ridge Road, Singapore 119228, Singapore
| |
Collapse
|
41
|
Ronchetti D, Todoerti K, Tuana G, Agnelli L, Mosca L, Lionetti M, Fabris S, Colapietro P, Miozzo M, Ferrarini M, Tassone P, Neri A. The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J 2012. [PMID: 23178508 PMCID: PMC3511933 DOI: 10.1038/bcj.2012.41] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs involved in the maturation of other RNA molecules and generally located in the introns of host genes. It is now emerging that altered sno/scaRNAs expression may have a pathological role in cancer. This study elucidates the patterns of sno/scaRNAs expression in multiple myeloma (MM) by profiling purified malignant plasma cells from 55 MMs, 8 secondary plasma cell leukemias (sPCLs) and 4 normal controls. Overall, a global sno/scaRNAs downregulation was found in MMs and, even more, in sPCLs compared with normal plasma cells. Whereas SCARNA22 resulted the only sno/scaRNA characterizing the translocation/cyclin D4 (TC4) MM, TC2 group displayed a distinct sno/scaRNA signature overexpressing members of SNORD115 and SNORD116 families located in a region finely regulated by an imprinting center at 15q11, which, however, resulted overall hypomethylated in MMs independently of the SNORD115 and SNORD116 expression levels. Finally, integrative analyses with available gene expression and genome-wide data revealed the occurrence of significant sno/scaRNAs/host genes co-expression and the putative influence of allelic imbalances on specific snoRNAs expression. Our data extend the current view of sno/scaRNAs deregulation in cancer and add novel information to the bio-molecular complexity of plasma cell dyscrasias.
Collapse
Affiliation(s)
- D Ronchetti
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zismanov V, Drucker L, Attar-Schneider O, Matalon ST, Pasmanik-Chor M, Lishner M. Tetraspanins stimulate protein synthesis in myeloma cell lines. J Cell Biochem 2012; 113:2500-10. [PMID: 22415769 DOI: 10.1002/jcb.24126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intensive protein synthesis is a unique and differential trait of multiple myeloma (MM) cells. Previously we showed that tetraspanin (CD81, CD82) overexpression in MM cell lines attenuated Akt/mTOR cascades, activated UPR, and caused autophagic death, suggesting breach of protein homeostasis. Here, we explored the role of protein synthesis in the tetraspanin-induced MM cell death. Contrary to attenuation of the major metabolic regulator, mTOR we determined elevated steady-state levels of protein in CD81N1/CD82N1 transfected MM lines (RPMI-8226, CAG). Elevated levels of immunoglobulins supported increased protein production in RPMI-8226. Changes in cell morphology consistent with elevated protein synthesis were also determined (cell, nuclei, and nucleoli sizes and ratios). Increased levels of phospho-rpS6 and decreased levels of phospho-AMPK were consistent with increased translation but independent of mTOR. Involvement of p38 and its role in tetraspanin induced translation and cell death were demonstrated. Microarray analyses of tetraspanin transfected MM cell lines revealed activation of protein synthesis signaling cascades and signals implicated in ribosome biogenesis (snoRNAs). Finally, we showed tetraspanins elevated protein synthesis was instrumental to MM cells' death. This work explores and demonstrates that excessive protein translation can be detrimental to MM cell lines and therefore may present a therapeutic target. Proteostasis is particularly important in MM because it integrates the high levels of protein production unique to myeloma cells with critically important microenvironmental cues. We suggest that increasing translation may be the path of least resistance in MM and thus may afford a novel platform for strategically designed therapy.
Collapse
|
43
|
Downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the oncogenic effect of IgH translocations occurring in the non-hyperdiploid subtype. Leukemia 2012; 27:925-31. [PMID: 23174883 DOI: 10.1038/leu.2012.302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Currently, multiple myeloma (MM) patients are broadly grouped into a non-hyperdiploid (nh-MM) group, highly enriched for IgH translocations, or into a hyperdiploid (h-MM) group, which is typically characterized by trisomies of some odd-numbered chromosomes. We compared the micro RNA (miRNA) expression profiles of these two groups and we identified 16 miRNAs that were downregulated in the h-MM group, relative to the nh-MM group. We found that target genes of the most differentially expressed miRNAs are directly involved in the pathogenesis of MM; specifically, the inhibition of hsa-miR-425, hsa-miR-152 and hsa-miR-24, which are all downregulated in h-MM, leads to the overexpression of CCND1, TACC3, MAFB, FGFR3 and MYC, which are the also the oncogenes upregulated by the most frequent IgH chromosomal translocations occurring in nh-MM. Importantly, we showed that the downregulation of these specific miRNAs and the upregulation of their targets also occur simultaneously in primary cases of h-MM. These data provide further evidence on the unifying role of cyclin D pathways deregulation as the key mechanism involved in the development of both groups of MM. Finally, they establish the importance of miRNA deregulation in the context of MM, thereby opening up the potential for future therapeutic approaches based on this molecular mechanism.
Collapse
|
44
|
Sawyer JR. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet 2011; 204:3-12. [PMID: 21356186 DOI: 10.1016/j.cancergencyto.2010.11.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/01/2010] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by very complex cytogenetic and molecular genetic aberrations. In newly diagnosed symptomatic patients, the modal chromosome number is usually either hyperdiploid with multiple trisomies or hypodiploid with one of several types of immunoglobulin heavy chain (Ig) translocations. The chromosome ploidy status and Ig rearrangements are two genetic criteria that are used to help stratify patients into prognostic groups based on the findings of conventional cytogenetics and fluorescence in situ hybridization (FISH). In general, the hypodiploid group with t(4;14)(p16;q32) or t(14;16)(q32;q23) is considered a high-risk group, while the hyperdiploid patients with t(11;14)(q13;q32) are considered a better prognostic group. As the disease progresses, it becomes more proliferative and develops a number of secondary chromosome aberrations. These secondary aberrations commonly involve MYC rearrangements, del(13q), del(17p), and the deletion of 1p and/or amplification of 1q. Of the secondary aberrations, del(17p) is consistently associated with poor prognosis. All of these cytogenetic aberrations and many additional ones are now identified by means of high resolution molecular profiling. Gene expression profiling (GEP), array comparative genomic hybridization (aCGH), and single-nucleotide polymorphism (SNP) arrays have been able to identify novel genetic aberration patterns that have previously gone unrecognized. With the integration of data from these profiling techniques, new subclassifications of MM have been proposed which define distinct molecular genetic subgroups. In this review, the findings from conventional cytogenetics, interphase FISH, GEP, aCGH, and SNP profiles are described to provide the conceptual framework for defining the emerging molecular genetic subgroups with prognostic significance.
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Department of Pathology and Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
45
|
Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14). Blood 2011; 117:3809-15. [DOI: 10.1182/blood-2010-02-268987] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In multiple myeloma (MM) pathogenesis, hyperdiploidy and nonhyperdiploidy are recognized as 2 major cytogenetic pathways. Here, we assessed the role of hyperdiploidy in 426 patients with monoclonal plasma cell disorders, among them 246 patients with AL amyloidosis (AL), by interphase fluorescence in situ hybridization. Hyperdiploidy was defined by a well-established score requiring trisomies for at least 2 of the 3 chromosomes 5, 9, and 15. The hyperdiploidy frequency in AL was a mere 11% compared with 30% in monoclonal gammopathy of undetermined significance (P < .001) and 46% in AL with concomitant MM I (P < .001). Overall, hyperdiploidy was associated with an intact immunoglobulin, κ light chain restriction, higher age, and bone marrow plasmacytosis, but was unrelated to the organ involvement pattern in AL. Clustering of 6 major cytogenetic aberrations in AL by an oncogenetic tree model showed that hyperdiploidy and t(11;14) were almost mutually exclusive, whereas gain of 1q21 favored hyperdiploidy. Deletion 13q14 and secondary IgH translocations were equally distributed between ploidy groups. We conclude that the interphase fluorescence in situ hybridization–based hyperdiploidy score is also a feasible tool to delineate hyperdiploid patients in early-stage monoclonal gammopathies and that the cytogenetic pathogenetic concepts developed in MM are transferable to AL.
Collapse
|
46
|
Baritaki S, Huerta-Yepez S, Cabrava-Haimandez MDL, Sensi M, Canevari S, Libra M, Penichet M, Chen H, Berenson JR, Bonavida B. Unique Pattern of Overexpression of Raf-1 Kinase Inhibitory Protein in Its Inactivated Phosphorylated Form in Human Multiple Myeloma. ACTA ACUST UNITED AC 2011; 2. [PMID: 24286018 DOI: 10.1615/forumimmundisther.v2.i2.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological and incurable malignancy of plasma cells with low proliferative activity in the bone marrow. MM patients initially respond to conventional therapy, however, many develop resistance and recurrences occur. We have identified RKIP as a novel gene product that is differentially overexpressed in MM cell lines and MM tissues compared to other studied tumors and normal bone marrow. This overexpression consisted, in large part, of a phosphorylated inactive form of RKIP at Ser153 (p-Ser153 RKIP). In contrast to RKIP, p-Ser153 RKIP lacks its ability to inhibit the MAPK signaling pathway. The overexpression of p-Ser153 RKIP in MM cell lines and MM tissues was further validated in a mouse model carrying a human MM xenograft, namely, LAGλ-1B. Bioinformatic analyses from databases support the presence of increased RKIP mRNA expression in MM compared to normal plasma cells. In these databases, high RKIP levels in MM are also correlated with the nonhyperdiploid status and the presence of IgH translocations, parameters that generally display more aggressive clinical features and shorter patients' survival irrespective of the treatment. Since RKIP expression regulates both the NF-κB and MAPK survival pathways, the overexpression of "inactive" p-Ser153 RKIP in MM might contribute positively to the overall cell survival/antiapoptotic phenotype and drug resistance of MM through the constitutive activation of survival pathways and downstream the transcription of anti-apoptotic gene products. The overexpression of RKIP and p-Ser153 RKIP in MM is the first demonstration in the literature, since in most tumor tissues the expression of RKIP is very low and the expression of p-Ser153 RKIP is much lower. The relationship between the levels of active RKIP and inactive p-Ser153 RKIP in MM may be of prognostic significance, and the regulation of RKIP activity may be a target for therapeutic intervention.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Polycomb target genes are silenced in multiple myeloma. PLoS One 2010; 5:e11483. [PMID: 20634887 PMCID: PMC2901331 DOI: 10.1371/journal.pone.0011483] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/02/2010] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG) proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP) assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep) and the histone deacetylase inhibitor LBH589 (Panobinostat), reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies.
Collapse
|
48
|
Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 2010; 114:e20-6. [PMID: 19846888 DOI: 10.1182/blood-2009-08-237495] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To date, little evidence of miRNA expression/deregulation in multiple myeloma has been reported. To characterize miRNA in the context of the major multiple myeloma molecular types, we generated miRNA expression profiles of highly purified malignant plasma cells from 40 primary tumors. Furthermore, transcriptional profiles, available for all patients, were used to investigate the occurrence of miRNA/predicted target mRNA pair anticorrelations, and the miRNA and genome-wide DNA data were integrated in a subset of patients to evaluate the influence of allelic imbalances on miRNA expression. Differential miRNA expression patterns were identified, which were mainly associated with the major IGH translocations; particularly, t(4;14) patients showed specific overexpression of let-7e, miR-125a-5p, and miR-99b belonging to a cluster at 19q13.33. The occurrence of other lesions (ie, 1q gain, 13q and 17p deletions, and hyperdiploidy) was slightly characterized by specific miRNA signatures. Furthermore, the occurrence of several allelic imbalances or loss of heterozygosity was found significantly associated with the altered expression of miRNAs located in the involved regions, such as let-7b at 22q13.31 or miR-140-3p at 16q22. Finally, the integrative analysis based on computational target prediction and miRNA/mRNA profiling defined a network of putative functional miRNA-target regulatory relations supported by expression data.
Collapse
|
49
|
Weinhold N, Moreaux J, Raab MS, Hose D, Hielscher T, Benner A, Meißner T, Ehrbrecht E, Brough M, Jauch A, Goldschmidt H, Klein B, Moos M. NPM1 is overexpressed in hyperdiploid multiple myeloma due to a gain of chromosome 5 but is not delocalized to the cytoplasm. Genes Chromosomes Cancer 2010; 49:333-41. [DOI: 10.1002/gcc.20745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I, Todoerti K, Verdelli D, Battaglia C, Bertoni F, Deliliers GL, Neri A. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosomes Cancer 2009; 48:603-14. [PMID: 19396863 DOI: 10.1002/gcc.20668] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is characterized by marked genomic heterogeneity. Beyond structural rearrangements, a relevant role in its biology is represented by allelic imbalances leading to significant variations in ploidy status. To elucidate better the genomic complexity of MM, we analyzed a panel of 45 patients using combined FISH and microarray approaches. We firstly generated genome-wide profiles of 41 MMs and four plasma cell leukemias, using a self-developed procedure to infer exact local copy numbers (CNs) for each sample. Our analysis allowed the identification of a significant fraction of patients showing near-tetraploidy. Furthermore, a conventional hierarchical clustering analysis showed that near-tetraploidy, 1q gain, hyperdiploidy, and recursive deletions at 1p and chromosomes 13, 14, and 22 were the main aberrations driving samples grouping. Moreover, mapping information was integrated with gene expression profiles of the tumor samples. A multiclass analysis of transcriptional profiles characterizing the different clusters showed marked gene-dosage effects, particularly concerning 1q transcripts; this finding was also confirmed by a nonparametric analysis between normalized gene expression levels and local CN variations (1027 highly-significant correlated genes). Finally, we identified several loci in which gene expression correlated with the occurrence of loss of heterozygosity. Our results provide insights into the composite network linking genome structure and transcriptional features in MM.
Collapse
Affiliation(s)
- Luca Agnelli
- Department of Medical Sciences, University of Milano and Hematology 1-CTMO, Fondazione IRCCS Ospedale Maggiore Policlinico Mangiagalli Regina Elena, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|