1
|
Hagiwara S, Ri M, Ebina T, Marumo Y, Nakamura T, Hirade K, Nakashima T, Asano A, Kinoshita S, Suzuki T, Narita T, Masaki A, Komatsu H, Iida S. Immunosuppressive Effects of Multiple Myeloma-Derived Extracellular Vesicles Through T Cell Exhaustion. Cancer Sci 2025. [PMID: 40344445 DOI: 10.1111/cas.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Extracellular vehicles (EVs) are reported to be involved in several processes relating to tumor progression, including angiogenesis, osteolysis, and drug resistance in multiple myeloma (MM). However, the role of EVs in the immune-suppressive milieu of MM is poorly understood. Here, we investigated the effects of MM-derived EVs on T cells, focusing on markers of T cell exhaustion. Using activated peripheral blood mononuclear cells from healthy donors, we observed immunosuppressive effects such as upregulated expression of immune checkpoint markers on CD8+ T cells treated with MM-derived EVs. Proteomic analysis identified several proteins, such as IL-8, SLC1A5, PIN2, and FSP1, associated with regulation of T cell exhaustion and chronic inflammation. Surprisingly, sphingosine kinase 1 (SPHK1) was enriched in MM cell line-derived EVs, implicating SPHK1/S1P signaling in the immunosuppressive effect of MM EVs. Thus, MM-derived EVs may promote T cell exhaustion via upregulating the expression of immune checkpoint markers and thereby contribute to the formation of the immune-suppressive milieu of MM, resulting in impaired T cell activity.
Collapse
Affiliation(s)
- Shinya Hagiwara
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
- Department of Blood Transfusion and Cell Therapy, Nagoya City University Hospital, Nagoya, Japan
| | - Toru Ebina
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Yoshiaki Marumo
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Tomoyuki Nakamura
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Kentaro Hirade
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Takahiro Nakashima
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Arisa Asano
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shiori Kinoshita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Tomotaka Suzuki
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Tomoko Narita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Ayako Masaki
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirokazu Komatsu
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
2
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Montefusco D, Jamil M, Maczis MA, Schroeder W, Levi M, Ranjit S, Allegood J, Bandyopadhyay D, Retnam R, Spiegel S, Cowart LA. Sphingosine Kinase 1 Mediates Sexual Dimorphism in Fibrosis in a Mouse Model of NASH. Mol Metab 2022; 62:101523. [PMID: 35671973 PMCID: PMC9194589 DOI: 10.1016/j.molmet.2022.101523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Men with non-alcoholic fatty liver disease (NAFLD) are more likely to progress to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of this dimorphism is unclear. We have previously shown that mice with global deletion of SphK1, the enzyme that produces the bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), were protected from development of NASH. The aim of this study was to elucidate the role of hepatocyte-specific SphK1 in development of NASH and to compare its contribution to hepatosteatosis in male and female mice. RESULTS We generated hepatocyte-specific SphK1 knockout mice (SphK1-hKO). Unlike the global knockout, SphK1-hKO male mice were not protected from diet-induced steatosis, inflammation, or fibrogenesis. In contrast, female SphK1-hKO mice were protected from inflammation. Surprisingly, however, in these female mice, there was a ∼10-fold increase in the fibrosis markers Col1α1 and 2-3 fold induction of alpha smooth muscle actin and the pro-fibrotic chemokine CCL5. Because increased fibrosis in female SphK1-hKO mice occurred despite an attenuated inflammatory response, we investigated the crosstalk between hepatocytes and hepatic stellate cells, central players in fibrosis. We found that estrogen stimulated release of S1P from female hepatocytes preventing TGFβ-induced expression of Col1α1 in HSCs via S1PR3. CONCLUSIONS The results revealed a novel pathway of estrogen-mediated cross-talk between hepatocytes and HSCs that may contribute to sex differences in NAFLD through an anti-fibrogenic function of the S1P/S1PR3 axis. This pathway is susceptible to pharmacologic manipulation, which may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- David Montefusco
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA.
| | - Maryam Jamil
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Melissa A Maczis
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - William Schroeder
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Jeremy Allegood
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | | | - Reuben Retnam
- Virginia Commonwealth University Department of Biostatistics, VA, USA
| | - Sarah Spiegel
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - L Ashley Cowart
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA; Hunter Holmes McGuire VAMC, Richmond, VA, USA
| |
Collapse
|
4
|
Petrusca DN, Mulcrone PL, Macar DA, Bishop RT, Berdyshev E, Suvannasankha A, Anderson JL, Sun Q, Auron PE, Galson DL, Roodman GD. GFI1-Dependent Repression of SGPP1 Increases Multiple Myeloma Cell Survival. Cancers (Basel) 2022; 14:cancers14030772. [PMID: 35159039 PMCID: PMC8833953 DOI: 10.3390/cancers14030772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New therapies have greatly improved the progression-free and overall survival for patients with “standard risk” multiple myeloma (MM). However, patients with “high risk” MM, in particular patients whose MM cells harbor non-functional p53, have very short survival times because of the early relapse and rapid development of highly therapy-resistant MM. In this report, we identify a novel mechanism responsible for Growth Factor Independence-1 (GFI1) regulation of the growth and survival of MM cells through its modulation of sphingolipid metabolism, regardless of their p53 status. We identify the Sphingosine-1-Phosphate Phosphatase (SGPP1) gene as a novel direct target of GFI1 transcriptional repression in MM cells, thus increasing intracellular sphingosine-1-phosphate levels, which stabilizes c-Myc. Our results support GFI1 as an attractive therapeutic target for all types of MM, including the “high risk” patient population with non-functional p53, as well as a possible therapeutic approach for other types of cancers expressing high levels of c-Myc. Abstract Multiple myeloma (MM) remains incurable for most patients due to the emergence of drug resistant clones. Here we report a p53-independent mechanism responsible for Growth Factor Independence-1 (GFI1) support of MM cell survival by its modulation of sphingolipid metabolism to increase the sphingosine-1-phosphate (S1P) level regardless of the p53 status. We found that expression of enzymes that control S1P biosynthesis, SphK1, dephosphorylation, and SGPP1 were differentially correlated with GFI1 levels in MM cells. We detected GFI1 occupancy on the SGGP1 gene in MM cells in a predicted enhancer region at the 5’ end of intron 1, which correlated with decreased SGGP1 expression and increased S1P levels in GFI1 overexpressing cells, regardless of their p53 status. The high S1P:Ceramide intracellular ratio in MM cells protected c-Myc protein stability in a PP2A-dependent manner. The decreased MM viability by SphK1 inhibition was dependent on the induction of autophagy in both p53WT and p53mut MM. An autophagic blockade prevented GFI1 support for viability only in p53mut MM, demonstrating that GFI1 increases MM cell survival via both p53WT inhibition and upregulation of S1P independently. Therefore, GFI1 may be a key therapeutic target for all types of MM that may significantly benefit patients that are highly resistant to current therapies.
Collapse
Affiliation(s)
- Daniela N. Petrusca
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Correspondence: ; Tel.: +1-(317)-278-5548
| | - Patrick L. Mulcrone
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
| | - David A. Macar
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15219, USA; (D.A.M.); (P.E.A.)
| | - Ryan T. Bishop
- Department of Tumor Biology, H. Lee Moffitt Cancer Research Center and Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA;
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA;
| | - Attaya Suvannasankha
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Richard L. Rodebush Veterans Affairs Medical Center, 1481 W 10th St., Indianapolis, IN 46202, USA
| | - Judith L. Anderson
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
| | - Quanhong Sun
- Department of Medicine, Division of Hematology/Oncology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC Hillman Cancer Center Research Pavilion, 5117 Centre Ave, Pittsburgh, PA 15213, USA; (Q.S.); (D.L.G.)
| | - Philip E. Auron
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15219, USA; (D.A.M.); (P.E.A.)
| | - Deborah L. Galson
- Department of Medicine, Division of Hematology/Oncology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC Hillman Cancer Center Research Pavilion, 5117 Centre Ave, Pittsburgh, PA 15213, USA; (Q.S.); (D.L.G.)
| | - G. David Roodman
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Richard L. Rodebush Veterans Affairs Medical Center, 1481 W 10th St., Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Li Y, Zhang L, Xu T, Zhao X, Jiang X, Xiao F, Sun H, Wang L. Aberrant ENPP2 expression promotes tumor progression in multiple myeloma. Leuk Lymphoma 2021; 63:963-974. [PMID: 34847837 DOI: 10.1080/10428194.2021.2010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) has been recently linked to tumor development. However, its role in modulating multiple myeloma (MM) disease progression remains unclear. Here, we demonstrated that CD138+ cells isolated from MM patients presented with higher expression of ENPP2 compared with CD138- cells. Treatment of MM cells with IL-6 resulted in ENPP2 upregulation. ENPP2 overexpression promoted proliferation, inhibited apoptosis, increased lysophosphatidic acid (LPA) generation, and upregulated osteoclastogenesis mediator expression in MM cells. In contrast, ENPP2 inhibition induced apoptosis, suppressed proliferation and survival, decreased LPA generation and downregulated osteoclastogenesis mediator expression. In an MM xenograft mouse model, ENPP2 knockdown significantly reduced MM tumor burden by inhibiting cell proliferation and inducing apoptosis. Furthermore, ENPP2 knockdown decreased the levels of LPA, osteoclastogenesis mediators in sera of mice with MM. Our findings revealed the tumor-promoting role of ENPP2 in MM, thus providing new molecular evidence for targeting the ENPP2-LPA axis in MM therapy.
Collapse
Affiliation(s)
- Yuxiang Li
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China.,Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Tianxin Xu
- School of Nursing, Jilin University, Changchun, P. R. China
| | - Xia Zhao
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Xiaona Jiang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Huiyan Sun
- Central Laboratory, Hebei Yanda Medical Research Institute, Sanhe, P. R. China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China.,Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
6
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
7
|
Ahmad SS, Waheed T, Rozeen S, Mahmood S, Kamal MA. Therapeutic Study of Phytochemicals Against Cancer and Alzheimer's Disease Management. Curr Drug Metab 2020; 20:1006-1013. [PMID: 31902351 DOI: 10.2174/1389200221666200103092719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Phytochemicals are a significant piece of conventional prescription and have been researched in detail for conceivable consideration in current drug discovery. Medications and plants are firmly identified for traditional prescriptions and ethnomedicines that are basically arranged from plants. Recognizing the medical advantages of phytochemicals is of fundamental advancement in medication and useful sustenance improvement. Secondary metabolites of different plants have been customarily used for the improvement of human wellbeing. The phytochemicals are diets rich, which can upgrade neuroplasticity and protection from neurodegeneration. RESULTS Phytochemicals keep on entering clinical preliminaries or provide leads for the synthesis of medicinal agents. Phytochemicals are a great extent cancer prevention agents in nature at lower concentrations and under favorable cell conditions that adequately avoid the oxidation of different molecules that have an ability to produce free radicals and thus protect the body. CONCLUSION The purpose of this review is to describe the use of phytochemicals against cancer and Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Tayyaba Waheed
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Sayed Rozeen
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Sufia Mahmood
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
8
|
Zhang J, Wang C, Xu H. miR-217 suppresses proliferation and promotes apoptosis in cardiac myxoma by targeting Interleukin-6. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Tiper IV, East JE, Subrahmanyam PB, Webb TJ. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. Pathog Dis 2016; 74:ftw063. [PMID: 27354294 DOI: 10.1093/femspd/ftw063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a sphingosine containing lipid intermediate obtained from ceramide. S1P is known to be an important signaling molecule and plays multiple roles in the context of immunity. This lysophospholipid binds and activates G-protein-coupled receptors (GPCRs) known as S1P receptors 1-5 (S1P1-5). Once activated, these GPCRs mediate signaling that can lead to alterations in cell proliferation, survival or migration, and can also have other effects such as promoting angiogenesis. In this review, we will present evidence demonstrating a role for S1P in lymphocyte migration, inflammation and infection, as well as in cancer. The therapeutic potential of targeting S1P receptors, kinases and lyase will also be discussed.
Collapse
Affiliation(s)
- Irina V Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - James E East
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood 2015; 124:1915-25. [PMID: 25122609 DOI: 10.1182/blood-2014-03-559385] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sphingolipid metabolism is being increasingly recognized as a key pathway in regulating cancer cell survival and proliferation. However, very little is known about its role in multiple myeloma (MM). We investigated the potential of targeting sphingosine kinase 2 (SK2) for the treatment of MM. We found that SK2 was overexpressed in MM cell lines and in primary human bone marrow (BM) CD1381 myeloma cells. Inhibition of SK2 by SK2- specific short hairpin RNA or ABC294640 (a SK2 specific inhibitor) effectively inhibited myeloma cell proliferation and induced caspase 3–mediated apoptosis. ABC294640 inhibited primary human CD1381 myeloma cells with the same efficacy as with MM cell lines. ABC294640 effectively induced apoptosis of myeloma cells, even in the presence of BM stromal cells. Furthermore, we found that ABC294640 downregulated the expression of pS6 and directed c-Myc and myeloid cell leukemia 1 (Mcl-1) for proteasome degradation. In addition, ABC294640 increased Noxa gene transcription and protein expression. ABC294640, per se, did not affect the expression of B-cell lymphoma 2 (Bcl-2), but acted synergistically with ABT-737 (a Bcl-2 inhibitor) in inducing myeloma cell death. ABC294640 suppressed myeloma tumor growth in vivo in mouse myeloma xenograft models. Our data demonstrated that SK2 provides a novel therapeutic target for the treatment of MM.This trial was registered at www.clinicaltrials.gov as #NCT01410981.
Collapse
|
11
|
Xu J, Sun HY, Xiao FJ, Wang H, Yang Y, Wang L, Gao CJ, Guo ZK, Wu CT, Wang LS. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling. Biochem Biophys Res Commun 2015; 460:409-15. [PMID: 25791478 DOI: 10.1016/j.bbrc.2015.03.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 02/05/2023]
Abstract
SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-кB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM.
Collapse
Affiliation(s)
- Jun Xu
- Graduate School of Anhui Medical University, Hefei, PR China; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hui-Yan Sun
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Feng-Jun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yang Yang
- Department of Hematology, General Hospital of Air Force, Beijing, PR China
| | - Lu Wang
- Department of Hematology, PLA General Hospital, Beijing, PR China
| | - Chun-Ji Gao
- Department of Hematology, PLA General Hospital, Beijing, PR China
| | - Zi-Kuan Guo
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Chu-Tse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
12
|
Driver JA, Zhou XZ, Lu KP. Pin1 dysregulation helps to explain the inverse association between cancer and Alzheimer's disease. Biochim Biophys Acta Gen Subj 2015; 1850:2069-76. [PMID: 25583562 DOI: 10.1016/j.bbagen.2014.12.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pin1 is an intracellular signaling molecule which plays a critical but opposite role in the pathogenesis of Alzheimer's disease (AD) and many human cancers. SCOPE OF REVIEW We review the structure and function of the Pin1 enzyme, the diverse roles it plays in cycling cells and neurons, the epidemiologic evidence for the inverse association between cancer and AD, and the potential therapeutic implications of Pin1-based therapies. MAJOR CONCLUSIONS Pin1 is a unique enzyme that has effects on the function of target proteins by "twisting" them into different shapes. Cycling cells use Pin1 to help coordinate cell division. It is over-expressed and/or activated by multiple mechanisms in many common human cancers, and acts on multiple signal pathways to promote tumorigenesis. Inhibition of Pin1 in animal models has profound anti-tumor effects. In contrast, Pin1 is down-regulated or inactivated by multiple mechanisms in AD brains. The absence of Pin1 impairs tau function and amyloid precursor protein processing, leading to tangle- and amyloid-related pathologies and neurodegeneration in an age-dependent manner, resembling human AD. We have developed cis and trans conformation-specific antibodies to provide the first direct evidence that tau exists in distinct cis and trans conformations and that Pin1 accelerates its cis to trans conversion, thereby protecting against tangle formation in AD. GENERAL SIGNIFICANCE Available studies on Pin1 suggest that cancer and AD may share biological pathways that are deregulated in different directions. Pin1 biology opens exciting preventive and therapeutic horizons for both cancer and neurodegeneration. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Jane A Driver
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System and the Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xiao Zhen Zhou
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Kun Ping Lu
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget 2014; 4:2186-207. [PMID: 24327604 PMCID: PMC3926819 DOI: 10.18632/oncotarget.1497] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the era of new and mostly effective therapeutic protocols, multiple myeloma still tends to be a hard-to-treat hematologic cancer. This hallmark of the disease is in fact a sequel to drug resistant phenotypes persisting initially or emerging in the course of treatment. Furthermore, the heterogeneous nature of multiple myeloma makes treating patients with the same drug challenging because finding a drugable oncogenic process common to all patients is not yet feasible, while our current knowledge of genetic/epigenetic basis of multiple myeloma pathogenesis is outstanding. Nonetheless, bone marrow microenvironment components are well known as playing critical roles in myeloma tumor cell survival and environment-mediated drug resistance happening most possibly in all myeloma patients. Generally speaking, however; real mechanisms underlying drug resistance in multiple myeloma are not completely understood. The present review will discuss the latest findings and concepts in this regard. It reviews the association of important chromosomal translocations, oncogenes (e.g. TP53) mutations and deranged signaling pathways (e.g. NFκB) with drug response in clinical and experimental investigations. It will also highlight how bone marrow microenvironment signals (Wnt, Notch) and myeloma cancer stem cells could contribute to drug resistance in multiple myeloma.
Collapse
Affiliation(s)
- Jahangir Abdi
- Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
14
|
Dai L, Xia P, Di W. Sphingosine 1-phosphate: a potential molecular target for ovarian cancer therapy? Cancer Invest 2014; 32:71-80. [PMID: 24499107 DOI: 10.3109/07357907.2013.876646] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sphingosine 1-phosphate (S1P) is an important signaling regulator involved in tumor progression in multiple neoplasms. However, the role of S1P in the pathogenesis of ovarian cancer remains unclear. Herein, we summarize recent advances in understanding the impact of S1P signaling in ovarian cancer progression. S1P, aberrantly produced in ovarian cancer patients, is involved in the regulation of key cellular processes that contribute to ovarian cancer initiation and progression. Moreover, agents that block the S1P signaling pathway inhibit ovarian cancer cell growth or induce apoptosis. Hence, current evidence suggests that S1P may become a potential molecular target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , People's Republic of China1
| | | | | |
Collapse
|
15
|
Abstract
The role of sphingolipids as bioactive signaling molecules that can regulate cell fate decisions puts them at center stage for cancer treatment and prevention. While ceramide and sphingosine have been established as antigrowth molecules, sphingosine-1-phosphate (S1P) offers a progrowth message to cells. The enzymes responsible for maintaining the balance between these "stop" or "go" signals are the sphingosine kinases (SK), SK1 and SK2. While the relative contribution of SK2 is still being elucidated and may involve an intranuclear role, a substantial amount of evidence suggests that regulation of sphingolipid levels by SK1 is an important component of carcinogenesis. Here, we review the literature regarding the role of SK1 as an oncogene that can function to enhance cancer cell viability and promote tumor growth and metastasis; highlighting the importance of developing specific SK1 inhibitors to supplement current cancer therapies.
Collapse
Affiliation(s)
- Linda A Heffernan-Stroud
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
16
|
Wallington-Beddoe CT, Bradstock KF, Bendall LJ. Oncogenic properties of sphingosine kinases in haematological malignancies. Br J Haematol 2013; 161:623-638. [PMID: 23521541 DOI: 10.1111/bjh.12302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sphingosine kinases (SphKs) have relatively recently been implicated in contributing to malignant cellular processes with particular interest in the oncogenic properties of SPHK1. Whilst SPHK1 has received considerable attention as a putative oncoprotein, SPHK2 has been much more difficult to study, with often conflicting data surrounding its role in cancer. Initial studies focused on non-haemopoietic malignancies, however a growing body of literature on the role of sphingolipid metabolism in haemopoietic malignancies is now emerging. This review provides an overview of the current state of knowledge of the SphKs and the bioactive lipid sphingosine 1-phosphate (S1P), the product of the reaction they catalyse. It then reviews the current literature regarding the roles of S1P and the SphKs in haemopoietic malignancies and discusses the compounds currently available that modulate sphingolipid metabolism and their potential and shortcomings as therapeutic agents for the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- Westmead Institute for Cancer Research, Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia
| | | | - Linda J Bendall
- Westmead Institute for Cancer Research, Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Gandy KAO, Obeid LM. Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 2013:275-303. [PMID: 23563662 DOI: 10.1007/978-3-7091-1511-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
18
|
Stevenson CE, Takabe K, Nagahashi M, Milstien S, Spiegel S. Targeting sphingosine-1-phosphate in hematologic malignancies. Anticancer Agents Med Chem 2012; 11:794-8. [PMID: 21707492 DOI: 10.2174/187152011797655122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid mediator that regulates several processes important for hematologic cancer progression. S1P is generated by two sphingosine kinases, SphK1 and SphK2, and is exported outside the cell, where it activates specific cell surface S1P G-protein coupled receptors in autocrine/paracrine manner, coined "inside-out signaling". In this review, we highlight the importance of SphK1 and inside-out signaling by S1P in hematologic malignancy. We also summarize the results of studies targeting the SphK1/S1P/S1P receptor axis and the effects of the S1P receptor modulator, FTY720, in hematologic malignancy.
Collapse
Affiliation(s)
- Christina E Stevenson
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, 23298-0614, USA
| | | | | | | | | |
Collapse
|
19
|
Loh KC, Baldwin D, Saba JD. Sphingolipid signaling and hematopoietic malignancies: to the rheostat and beyond. Anticancer Agents Med Chem 2012; 11:782-93. [PMID: 21707493 DOI: 10.2174/187152011797655159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid with diverse functions including the promotion of cell survival, proliferation and migration, as well as the regulation of angiogenesis, inflammation, immunity, vascular permeability and nuclear mechanisms that control gene transcription. S1P is derived from metabolism of ceramide, which itself has diverse and generally growth-inhibitory effects through its impact on downstream targets involved in regulation of apoptosis, senescence and cell cycle progression. Regulation of ceramide, S1P and the biochemical steps that modulate the balance and interconversion of these two lipids are major determinants of cell fate, a concept referred to as the "sphingolipid rheostat." There is abundant evidence that the sphingolipid rheostat plays a role in the origination, progression and drug resistance patterns of hematopoietic malignancies. The pathway has also been exploited to circumvent the problem of chemotherapy resistance in leukemia and lymphoma. Given the broad effects of sphingolipids, targeting multiple steps in the metabolic pathway may provide possible therapeutic avenues. However, new observations have revealed that sphingolipid signaling effects are more complex than previously recognized, requiring a revision of the sphingolipid rheostat model. Here, we summarize recent insights regarding the sphingolipid metabolic pathway and its role in hematopoietic malignancies.
Collapse
Affiliation(s)
- Kenneth C Loh
- Children's Hospital Oakland Research Institute, Center for Cancer Research, CA 94609, USA
| | | | | |
Collapse
|
20
|
Li QF, Zhu HY, Yang YF, Liu J, Xiao FJ, Zhang QW, Wu CT, Wang H, Wang LS. Prokineticin-1/endocrine gland-derived vascular endothelial growth factor is a survival factor for human multiple myeloma cells. Leuk Lymphoma 2011; 51:1902-12. [PMID: 20795791 DOI: 10.3109/10428194.2010.512963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prokineticin-1 (PK1) has been identified as a mitogen-specific protein for the endothelium of steroidogenic glands. Here we report a novel function of PK1 in the regulation of multiple myeloma (MM) cells. PK1 activates multiple signals including mitogen-activated protein kinase (MAPK), PI3K-AKT, and Jak-STAT3, sphingosine kinase-1 (SPK1) in MM cells. Treatment of MM cells with PK1 causes a time- and dose-dependent phosphorylation of MAPK, AKT and STAT3 and upregulation of SPK1 expression and cellular activity. We also show that PK1 upregulates Mcl-1 expression in a time- and dose-dependent manner in human MM cell lines and in the cells of patients with MM. Pertussis toxin, a pan-PK1 receptor inhibitor, can block PK1-induced upregulation of Mcl-1, indicating it relates to a G-protein-coupled receptor. We also show that PK1 protects MM cells against apoptosis induced by starvation for fetal calf serum (FBS), or for FBS and IL-6. Taken together, PK1 activates multiple signaling pathways and, upregulates Mcl-1 expression, leading to proliferation and survival of MM cells.
Collapse
Affiliation(s)
- Qing-Fang Li
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Scherer EQ, Yang J, Canis M, Reimann K, Ivanov K, Diehl CD, Backx PH, Wier WG, Strieth S, Wangemann P, Voigtlaender-Bolz J, Lidington D, Bolz SS. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke 2010; 41:2618-24. [PMID: 20930159 DOI: 10.1161/strokeaha.110.593327] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE We sought to demonstrate that tumor necrosis factor (TNF)-α, via sphingosine-1-phosphate signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss. METHODS We performed intravital fluorescence microscopy to measure blood flow and capillary diameter in anesthetized guinea pigs. To measure capillary diameter ex vivo, capillary beds from the gerbil spiral ligament were isolated from the cochlear lateral wall and maintained in an organ bath. Isolated gerbil spiral modiolar arteries, maintained and transfected in organ culture, were used to measure calcium sensitivity (calcium-tone relationship). In a clinical study, a total of 12 adult patients presenting with typical symptoms of sudden hearing loss who were not responsive or only partially responsive to prednisolone treatment were identified and selected for etanercept treatment. Etanercept (25 mg s.c.) was self-administered twice a week for 12 weeks. RESULTS TNF-α induced a proconstrictive state throughout the cochlear microvasculature, which reduced capillary diameter and cochlear blood flow in vivo. In vitro isolated preparations of the spiral modiolar artery and spiral ligament capillaries confirmed these observations. Antagonizing sphingosine-1-phosphate receptor 2 subtype signaling (by 1 μmol/L JTE013) attenuated the effects of TNF-α in all models. TNF-α activated sphingosine kinase 1 (Sk1) and induced its translocation to the smooth muscle cell membrane. Expression of a dominant-negative Sk1 mutant (Sk1(G82D)) eliminated both baseline spiral modiolar artery calcium sensitivity and TNF-α effects, whereas a nonphosphorylatable Sk1 mutant (Sk1(S225A)) blocked the effects of TNF-α only. A small group of etanercept-treated, hearing loss patients recovered according to a 1-phase exponential decay (half-life=1.56 ± 0.20 weeks), which matched the kinetics predicted for a vascular origin. CONCLUSIONS TNF-α indeed reduces cochlear blood flow via activation of vascular sphingosine-1-phosphate signaling. This integrates hearing loss into the family of ischemic microvascular pathologies, with implications for risk stratification, diagnosis, and treatment.
Collapse
Affiliation(s)
- Elias Q Scherer
- Hals-Nasen-Ohrenklinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ekiz HA, Baran Y. Therapeutic applications of bioactive sphingolipids in hematological malignancies. Int J Cancer 2010; 127:1497-506. [DOI: 10.1002/ijc.25478] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells. Biochem Biophys Res Commun 2010; 393:637-42. [PMID: 20153728 DOI: 10.1016/j.bbrc.2010.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/09/2010] [Indexed: 11/21/2022]
Abstract
Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.
Collapse
|
24
|
Suh HN, Lee YJ, Han HJ. Interleukin-6 promotes 2-deoxyglucose uptake through p44/42 MAPKs activation via Ca2+/PKC and EGF receptor in primary cultured chicken hepatocytes. J Cell Physiol 2009; 218:643-52. [DOI: 10.1002/jcp.21641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Cross-talk between extracellular S1P/S1P2 and P42/44 MAPK in bcr/abl positive chronic myeloid leukemia cells. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-009-0020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
26
|
Li QF, Wu CT, Guo Q, Wang H, Wang LS. Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochem Biophys Res Commun 2008; 371:159-62. [DOI: 10.1016/j.bbrc.2008.04.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 01/11/2023]
|