1
|
He WF, Qin R, Gao YH, Zhou J, Wei JJ, Liu J, Hou XF, Ma HP, Xian CJ, Li XY, Chen KM. The interdependent relationship between the nitric oxide signaling pathway and primary cilia in pulse electromagnetic field-stimulated osteoblastic differentiation. FASEB J 2022; 36:e22376. [PMID: 35616355 DOI: 10.1096/fj.202101577rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Pulsed electromagnetic fields (PEMFs) have long been recognized being safe and effective in treating bone fracture nonunion and osteoporosis. However, the mechanism of osteogenic action of PEMFs is still unclear. While primary cilia are reported to be a sensory organelle for PEMFs, and nitric oxide (NO) plays an indispensable role in osteogenic effect of PEMFs, the relationship between NO and primary cilia is unknown. In this study, effects of treatment with 50 Hz 0.6 mT PEMFs on osteogenic differentiation and mineralization, NO secretion, and ciliary location of specific proteins were examined in rat calvarial osteoblasts (ROBs) with normal or abrogated primary cilia. It was found that PEMFs stimulated the osteogenic differentiation by activating the NOS/NO/sGC/cGMP/PKG signaling pathway, which need the existence of primary cilia. All components of the signaling pathway including iNOS, eNOS, sGC, PKG-1, and PKG-2 were localized to primary cilia, and eNOS was phosphorylated inside the primary cilia. Besides, primary cilia were elongated significantly by PEMF treatment and changed dynamically with the activation NO/cGMP pathway. When the pathway was blocked by L-NAME, PEMFs could no longer elongate the primary cilia and stimulate the osteoblastic differentiation. Thus, this study for the first time observed activation of the NO/cGMP signaling pathway in ciliary compartment of osteoblasts, and PEMFs could not stimulate the osteoblastic differentiation if the NO signaling pathway was blocked or the ciliogenesis was inhibited. Our findings indicate the interdependent relationship between NO and primary cilia in the PEMF-promoted osteogenesis.
Collapse
Affiliation(s)
- Wen-Fang He
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China.,Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, P. R. China
| | - Rong Qin
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Yu-Hai Gao
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Jian Zhou
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Juan-Juan Wei
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Jing Liu
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Xue-Feng Hou
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Hui-Ping Ma
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xue-Yan Li
- Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Ke-Ming Chen
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, P. R. China
| |
Collapse
|
2
|
An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, Chen B. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 2016; 147:46-58. [DOI: 10.1016/j.lfs.2016.01.024] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 01/03/2023]
|
3
|
Zhai YK, Guo XY, Ge BF, Zhen P, Ma XN, Zhou J, Ma HP, Xian CJ, Chen KM. Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K-AKT-eNOS-NO-cGMP-PKG. Bone 2014; 66:189-98. [PMID: 24956021 DOI: 10.1016/j.bone.2014.06.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 01/13/2023]
Abstract
Icariin, a prenylated flavonol glycoside isolated from Epimedii herba, has been found to be a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of icariin is related to the nitric oxide (NO) signal pathway and PI3K/AKT pathway in its upstream. Rat bone marrow stromal cells (rBMSCs) were cultured in osteogenic medium and treated with icariin or together with L-NAME, ODQ, PDE5, and/or LY294002 (the inhibitor of NOS, sGC, cGMP, and PI3K respectively), and effects were examined on the expression of signal messengers (NOS, NO, sGC, cGMP, PKG and PI3K) and the levels of osteogenic markers (alkaline phosphatase or ALP, osteocalcin and calcified nodules). It was found that icariin dose-dependently increased ALP activity, and treatment at the optimal concentration (10(-5)M) increased NOS activity, iNOS and eNOS expression, NO production, sGC and cGMP contents and PKG expression besides the phosphorylation of AKT. The addition of L-NAME, ODQ and PDE5 significantly inhibited the icariin effects on above markers respectively. The addition of LY294002 decreased the p-AKT level, NOS activity, eNOS expression and NO production significantly, but had no significant effect on iNOS expression. The addition of any of the four inhibitors also abolished the osteogenic effect of icariin on rBMSCs as indicated by ALP activity, osteocalcin synthesis, calcium deposition and the number and areas of calcified nodules. These results suggest that the osteogenic effect of icariin involves the PI3K-AKT-eNOS-NO-cGMP-PKG signal pathway. Furthermore, dosage response studies showed that icariin at 10(-6)M (a physiologically achievable concentration in vivo) also activated this signal pathway.
Collapse
Affiliation(s)
- Yuan-Kun Zhai
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Xiao-Yu Guo
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Bao-Feng Ge
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Ping Zhen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Xiao-Ni Ma
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Hui-Ping Ma
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| |
Collapse
|
4
|
Sosa LDV, Gutiérrez S, Petiti JP, Vaca AM, De Paul AL, Torres AI. Cooperative effect of E₂ and FGF2 on lactotroph proliferation triggered by signaling initiated at the plasma membrane. Am J Physiol Endocrinol Metab 2013; 305:E41-9. [PMID: 23651845 DOI: 10.1152/ajpendo.00027.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present work, we investigated the effect of 17β-estradiol (E₂) and basic fibroblast growth factor 2 (FGF2) on the lactotroph cell-proliferative response and the related membrane-initiated signaling pathway. Anterior pituitary mixed-cell cultures of random, cycling 3-mo-old female rats were treated with 10 nM E₂, E₂ membrane-impermeable conjugated BSA (E₂-BSA), PPT (ERα agonist), and DPN (ERβ agonist) alone or combined with FGF2 (10 ng/ml) for 30 min or 4 h. Although our results showed that the uptake of BrdU into the nucleus of lactotrophs was not modified by E₂ or FGF2 alone, a significant increase in the lactotroph uptake of BrdU was observed after E₂/FGF2 coincubation, with this effect being mimicked by PPT/FGF2. These proliferative effects were blocked by ICI 182,780 or PD-98059. The involvement of membrane ER in the proliferative response of prolactin cells induced by the steroid and FGF2 coincubation was confirmed using E₂-BSA, and the association between ERα and FGF receptor was observed after E₂/FGF2 treatment by immunoprecipitation. A significant increase in the ERK1/2 expression was noted after E₂, E₂-BSA, PPT, and FGF2 alone, which was more noticeable after E₂-BSA/FGF2, E₂/FGF2, or PPT/FGF2 treatments. This study provides evidence that E₂ and FGF2 exert a cooperative effect on the lactotroph proliferation principally by signaling initiated at the plasma membrane triggering a genomic effect mediated by MEK/ERK1/2, a common signaling pathway, that finally regulates the lactotroph population, thus contributing to pituitary plasticity.
Collapse
Affiliation(s)
- Liliana del V Sosa
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
5
|
Gutiérrez S, Sosa LDV, Petiti JP, Mukdsi JH, Mascanfroni ID, Pellizas CG, De Paul AL, Cambiasso MJ, Torres AI. 17β-Estradiol stimulates the translocation of endogenous estrogen receptor α at the plasma membrane of normal anterior pituitary cells. Mol Cell Endocrinol 2012; 355:169-79. [PMID: 22366173 DOI: 10.1016/j.mce.2012.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/21/2022]
Abstract
In the present work we aimed at identifying ERα in the plasma membrane of normal anterior pituitary cells and investigated if 17β-estradiol was able to induce their subcellular redistribution. Our results show that about 8% of anterior pituitary cells expressed ERα in the plasma membrane, with the geometrical mean fluorescence intensity being increased after steroid hormone treatment. 17β-Estradiol and the selective ERα agonist PPT induced an increase of ERα expression in the plasma membrane and activated the PKCα/ERK 1/2 pathway in a time-course not compatible with genomic actions, thus supporting the notion of membrane-initiated effects. These findings suggest that 17β-estradiol stimulates the translocation of endogenous ERα to the plasma membrane, consequently modulating this ER pool and leading to cellular biological effects in normal anterior pituitary gland.
Collapse
Affiliation(s)
- Silvina Gutiérrez
- Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, Haya de la Torre esq, Enrique Barros, Ciudad Universitaria, CP 5000 Córdoba, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sosa LDV, Gutiérrez S, Petiti JP, Palmeri CM, Mascanfroni ID, Soaje M, De Paul AL, Torres AI. 17β-Estradiol modulates the prolactin secretion induced by TRH through membrane estrogen receptors via PI3K/Akt in female rat anterior pituitary cell culture. Am J Physiol Endocrinol Metab 2012; 302:E1189-97. [PMID: 22354782 DOI: 10.1152/ajpendo.00408.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.
Collapse
Affiliation(s)
- Liliana d V Sosa
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Haya de la Torre esq. Enrique Barros, Ciudad Universitaria, CP 5000, Córdoba, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cheng G, Zhai Y, Chen K, Zhou J, Han G, Zhu R, Ming L, Song P, Wang J. Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO-cGMP-PKG pathway. Nitric Oxide 2011; 25:316-25. [PMID: 21664476 DOI: 10.1016/j.niox.2011.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/27/2011] [Accepted: 05/26/2011] [Indexed: 01/17/2023]
Abstract
Nitric oxide (NO) is an important intracellular and intercellular messenger, critically affecting bone metabolism. The purpose of this research is to investigate whether the effect of sinusoidal electromagnetic field (SEMF) on the differentiation and maturation of osteoblasts is mediated by the NO-cGMP-PKG signal pathway. We examined the impact of SEMF on nitric oxide synthase (NOS) activity, and found that L-NAME, nitric oxide synthase's inhibitor, prevents SEMF-mediated increase in NOS activity and NO levels. We showed that an inhibitor of soluble guanylyl cyclase (ODQ) blocks the increase in cGMP levels triggered by exposure to SEMF. The inhibitor PDE5, which hydrolyzes 3',5'-cyclic-GMP to 5'-GMP, prevents the SEMF's stimulation of PKG activity. We also blocked the NO-cGMP-PKG pathway to determine whether the maturation and mineralization of osteoblasts, stimulated by SEMF, would be inhibited. This was evaluated by measuring alkaline phosphatase (ALP) activity, osterix gene expression and mineralized bone modulus. After treatment with SEMF, the NOS activity increases in comparison with the control group (P<0.01), reaching the highest level after 0.5h. Osterix gene expression, ALP activity and mineralized bone nodules in the SEMF experimental group also increase significantly. However, these effects are partially blocked in the L-NAME treated cultures. Surprisingly, all the osteogenic markers in the SEMF+L-NAME group were slightly higher than in the control culture, but lower than in the cells exposed to SEMF only. We conclude that the NO-cGMP-PKG signal pathway is activated by SEMF treatment, the stimulatory effect of SEMF on the differentiation and mineralization of osteoblasts is attenuated when the pathway is blocked.
Collapse
Affiliation(s)
- Guozheng Cheng
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command, Gansu, China
| | | | | | | | | | | | | | | | | |
Collapse
|