1
|
Cryopreservation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Lan DTP, Binh PT, Giang NTQ, Van Mao C, Chung DT, Van Diep N, Trung DM, Van Tran P. Isolation and Differentiation of Amniotic Membrane Stem Cells Into Keratinocytes. Cell Transplant 2020; 29:963689720964381. [PMID: 33040596 PMCID: PMC7784561 DOI: 10.1177/0963689720964381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The human amniotic membrane is a highly abundant and readily available tissue that may be useful for regenerative medicine and cell therapy. The amniotic membrane stem cells can differentiate into multiple cell lineages; they have low immunogenicity and anti-inflammatory functions. This research aims to examine the protocols for the isolation of human amniotic membrane stem cells, including their phenotypic characterization and in vitro potential for differentiation toward keratinocytes. Human placentas were obtained from selected cesarean-sectioned births. We isolated amniotic stem cells by trypsin and collagenase B digestion and centrifuged with Percoll. After monolayer expansion of adherent cells, the cells were characterized by immunocytology with octamer-binding transcription factor 4 and differentiated into keratinocytes by treating the cells with insulin, hydrocortisone, BMP-4, and vitamin C. Protocol for isolation of stem cells from amniotic membrane has high efficiency. Differentiation markers of stem cells into keratinocytes, such as vimentin, cytokeratin (CK) 14, and CK19, were determined by reverse transcription-polymerase chain reaction increase over time in culture. Stem cells isolated from the amniotic membrane can differentiate into keratinocytes. It has opened the prospect of using stem cells to regenerate skin and clinical applications.
Collapse
Affiliation(s)
- Dam Thi Phuong Lan
- Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam.,* Both the authors share the first authorship
| | - Pham Thai Binh
- National Hospital of Endocrinology, Hanoi, Vietnam.,* Both the authors share the first authorship
| | | | - Can Van Mao
- Physiology Department, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dang Thanh Chung
- Physiology Department, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nong Van Diep
- Department of Biochemistry, Backan Hospital, Backan, Vietnam
| | - Do Minh Trung
- Research Institute of Medicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Van Tran
- Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
3
|
Bergeron L, Busuttil V, Botto JM. Multipotentiality of skin-derived precursors: application to the regeneration of skin and other tissues. Int J Cosmet Sci 2020; 42:5-15. [PMID: 31612512 DOI: 10.1111/ics.12587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022]
Abstract
Skin-derived precursors (SKPs) have been described as multipotent dermal precursors. Here, we provide a review of the breadth and depth of scientific literature and studies regarding SKPs, accounting for a large number of scientific publications. Interestingly, these progenitors can be isolated from embryonic and adult skin, as well as from a population of dermal cells cultured in vitro in monolayer. Gathering information from different authors, this review explores different aspects of the SKP theme, such as the potential distinct origins of SKPs in rodents and in humans, and also their ability to differentiate in vitro and in vivo into multiple lineages of different progeny. This remarkable capacity makes SKPs an interesting endogenous source of precursors to explore in the framework of experimental and therapeutic applications in different domains. SKPs are not only involved in the skin's dermal maintenance and support as well as wound healing, but also in hair follicle morphogenesis. This review points out the interests of future researches on SKPs for innovative perspectives that may be helpful in many different types of scientific and medical domains.
Collapse
Affiliation(s)
- L Bergeron
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| | - V Busuttil
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| | - J-M Botto
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| |
Collapse
|
4
|
Devi L, Makala H, Pothana L, Nirmalkar K, Goel S. Comparative efficacies of six different media for cryopreservation of immature buffalo (Bubalus bubalis) calf testis. Reprod Fertil Dev 2018; 28:872-885. [PMID: 25482277 DOI: 10.1071/rd14171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022] Open
Abstract
Buffalo calves have a high mortality rate (~80%) in commercial dairies and testis cryopreservation can provide a feasible option for the preservation of germplasm from immature males that die before attaining sexual maturity. The aim of the present study was to evaluate combinations of 10 or 20% dimethylsulfoxide (DMSO) with 0, 20 or 80% fetal bovine serum (FBS) for cryopreservation of immature buffalo testicular tissues, subjected to uncontrolled slow freezing. Tissues cryopreserved in 20% DMSO with 20% FBS (D20S20) showed total, tubular and interstitial cell viability, number of early apoptotic and DNA-damaged cells, surviving germ and proliferating cells and expression of testicular cell-specific proteins (POU class 5 homeobox (POU5F1), vimentin (VIM) and actin α2 (ACTA2)) similar to that of fresh cultured control (FCC; P>0.05). Expression of cytochrome P450, family 11, subfamily A (CYP11A1) protein and testosterone assay showed that only tissues cryopreserved in D20S20 had Leydig cells and secretory functions identical to that of FCC (P>0.05). High expression of superoxide dismutase2 (SOD2), cold-inducible RNA-binding protein (CIRBP) and RNA-binding motif protein3 (RBM3) proteins in cryopreserved tissues indicated involvement of cell signalling pathways regulating cellular protective mechanisms. Similarity in expression of pro-apoptosis proteins transcription factor tumour protein P53 (TP53) and BCL2-associated X protein (BAX) in D20S20 cryopreserved tissues to that of FCC (P>0.05) suggested lower apoptosis and DNA damage as key reasons for superior cryopreservation.
Collapse
Affiliation(s)
- Lalitha Devi
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Himesh Makala
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Lavanya Pothana
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Khemlal Nirmalkar
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Sandeep Goel
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
5
|
Xiao J, Li Q, Qu P, Zhang Z, Pan S, Wang Y, Zhang Y. Isolation of Bovine Skin-Derived Precursor Cells and Their Developmental Potential After Nuclear Transfer. Cell Reprogram 2016; 18:411-418. [PMID: 27906583 DOI: 10.1089/cell.2016.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Nuclei from less differentiated stem cells yield high cloning efficiency. However, pluripotent stem cells are rather difficult to obtain from bovines. Skin-derived precursor (SKPs) cells exhibit a certain degree of pluripotency, which has been shown to enhance the efficiency of nuclear transfer (NT) in pigs. In this study, bovine SKPs were isolated and characterized. Results showed that bovine SKPs expressed nestin, fibronectin, vimentin, pluripotency-related genes, and characteristic neural crest markers, such as NGFR, PAX3, SOX9, SNAI2, and OCT4. Bovine SKPs and fibroblasts were used as NT donor cells to examine and compare the preimplantation developmental potential of reconstructed embryos after somatic cell nuclear transfer (SCNT). Bovine SKP-cloned embryos displayed higher developmental competence in terms of blastocyst formation rate and total cell number in blastocysts compared with the bovine embryonic fibroblast-cloned embryos. This study revealed that bovine SKPs may be considered excellent candidate nuclear donors for SCNT and may provide a promising platform for transgenic cattle generation.
Collapse
Affiliation(s)
- Jiajia Xiao
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Qiaoqiao Li
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Pengxiang Qu
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Zihan Zhang
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Shaohui Pan
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Yongsheng Wang
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Yong Zhang
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| |
Collapse
|
6
|
Borisov MA, Petrakova OS, Gvazava IG, Kalistratova EN, Vasiliev AV. Stem Cells in the Treatment of Insulin-Dependent Diabetes Mellitus. Acta Naturae 2016; 8:31-43. [PMID: 27795842 PMCID: PMC5081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/02/2022] Open
Abstract
Diabetes affects over 350 million people worldwide, with the figure projected to rise to nearly 500 million over the next 20 years, according to the World Health Organization. Insulin-dependent diabetes mellitus (type 1 diabetes) is an endocrine disorder caused by an autoimmune reaction that destroys insulin-producing β-cells in the pancreas, which leads to insulin deficiency. Administration of exogenous insulin remains at the moment the treatment mainstay. This approach helps to regulate blood glucose levels and significantly increases the life expectancy of patients. However, type 1 diabetes is accompanied by long-term complications associated with the systemic nature of the disease and metabolic abnormalities having a profound impact on health. Of greater impact would be a therapeutic approach which would overcome these limitations by better control of blood glucose levels and prevention of acute and chronic complications. The current efforts in the field of regenerative medicine are aimed at finding such an approach. In this review, we discuss the time-honored technique of donor islets of Langerhans transplantation. We also focus on the use of pluripotent stem and committed cells and cellular reprogramming. The molecular mechanisms of pancreatic differentiation are highlighted. Much attention is devoted to the methods of grafts delivery and to the materials used during its creation.
Collapse
Affiliation(s)
- M. A. Borisov
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| | - O. S. Petrakova
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bld. 12, Moscow, 119991 , Russia
| | - I. G. Gvazava
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| | - E. N. Kalistratova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bld. 12, Moscow, 119991 , Russia
| | - A. V. Vasiliev
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bld. 12, Moscow, 119991 , Russia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
7
|
Differentiation of human skin-derived precursor cells into functional islet-like insulin-producing cell clusters. In Vitro Cell Dev Biol Anim 2015; 51:595-603. [DOI: 10.1007/s11626-015-9866-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/01/2015] [Indexed: 01/09/2023]
|
8
|
Pothana L, Makala H, Devi L, Varma VP, Goel S. Germ cell differentiation in cryopreserved, immature, Indian spotted mouse deer (Moschiola indica) testes xenografted onto mice. Theriogenology 2014; 83:625-33. [PMID: 25467768 DOI: 10.1016/j.theriogenology.2014.10.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022]
Abstract
Death of immature animals is one of the reasons for the loss of genetic diversity of rare and endangered species. Because sperm cannot be collected from immature males, cryobanking of testicular tissue combined with testis xenografting is a potential option for conservation. The objective of this study was to evaluate the establishment of spermatogenesis in cryopreserved immature testicular tissues from Indian spotted mouse deer (Moschiola indica) after ectopic xenografting onto immunodeficient nude mice. Results showed that testis tissues that were frozen in cryomedia containing either 10% DMSO with 80% fetal bovine serum (D10S80) or 20% DMSO with 20% fetal bovine serum (D20S20) had significantly more (P < 0.01) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeled positive interstitial cells when compared with fresh testis tissues (46.3 ± 3.4 and 51.9 ± 4.0 vs. 22.8 ± 2.0). Xenografted testicular tissues showed degenerated seminiferous tubules 24 weeks after grafting in testes that had been cryopreserved in D20S20; alternatively, pachytene spermatocytes were the most advanced germ cells in testes that were cryopreserved in D10S80. Proliferating cell nuclear antigen staining confirmed the proliferative status of spermatocytes, and the increases in tubular and lumen diameters indicated testicular maturation in xenografts. However, persistent anti-Müllerian hormone staining in Sertoli cells of xenografts revealed incomplete testicular maturation. This study reports that cryopreserved testis tissue that had been xenografted from endangered animals onto mice resulted in the establishment of spermatogenesis with initiation of meiosis. These findings are encouraging for cryobanking of testicular tissues from immature endangered animals to conserve their germplasm.
Collapse
Affiliation(s)
- Lavanya Pothana
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Himesh Makala
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Lalitha Devi
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Vivek Phani Varma
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Sandeep Goel
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| |
Collapse
|
9
|
Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med 2013; 2:284-96. [PMID: 23486833 PMCID: PMC3659839 DOI: 10.5966/sctm.2012-0147] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions.
Collapse
Affiliation(s)
| | | | - Bernard Rogister
- Neurosciences Unit and
- Development, Stem Cells and Regenerative Medicine Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | | |
Collapse
|
10
|
Wu JY, Sun YX, Wang AB, Che GY, Hu TJ, Zhang XM. Effect of newborn bovine serum on cryopreservation of adult bovine testicular tissue. Andrologia 2013; 46:308-12. [DOI: 10.1111/and.12084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2013] [Indexed: 01/15/2023] Open
Affiliation(s)
- J. Y. Wu
- Jilin Province Key Laboratory of Animal Embryo Engineering; The Center for Animal Embryo Engineering of Jilin Province; College of Veterinary Medicine; Jilin University; Changchun China
- Department of Laboratory Medicines; The 90th Hospital of Jinan; Jinan China
| | - Y. X. Sun
- Jilin Province Key Laboratory of Animal Embryo Engineering; The Center for Animal Embryo Engineering of Jilin Province; College of Veterinary Medicine; Jilin University; Changchun China
| | - A. B. Wang
- Jilin Province Key Laboratory of Animal Embryo Engineering; The Center for Animal Embryo Engineering of Jilin Province; College of Veterinary Medicine; Jilin University; Changchun China
| | - G. Y. Che
- Jilin Province Key Laboratory of Animal Embryo Engineering; The Center for Animal Embryo Engineering of Jilin Province; College of Veterinary Medicine; Jilin University; Changchun China
| | - T. J. Hu
- Jilin Province Changchun Haoyue Islamic Meat Co.Ltd.; Changchun China
| | - X. M. Zhang
- Jilin Province Key Laboratory of Animal Embryo Engineering; The Center for Animal Embryo Engineering of Jilin Province; College of Veterinary Medicine; Jilin University; Changchun China
| |
Collapse
|