1
|
Zhao Y, Zhang X, Han C, Cai Y, Li S, Hu X, Wu C, Guan X, Lu C, Nie X. Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:1068. [PMID: 35887565 PMCID: PMC9316609 DOI: 10.3390/jpm12071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacogenetics research on leukotriene modifiers (LTMs) for asthma has been developing rapidly, although pharmacogenetic testing for LTMs is not yet used in clinical practice. We performed a systematic review and meta-analysis on the impact of pharmacogenomics on LTMs response. Studies published until May 2022 were searched using PubMed, EMBASE, and Cochrane databases. Pharmacogenomics/genetics studies of patients with asthma using LTMs with or without other anti-asthmatic drugs were included. Statistical tests of the meta-analysis were performed with Review Manager (Revman, version 5.4, The Cochrane Collaboration, Copenhagen, Denmark) and R language and environment for statistical computing (version 4.1.0 for Windows, R Core Team, Vienna, Austria) software. In total, 31 studies with 8084 participants were included in the systematic review and five studies were also used to perform the meta-analysis. Two included studies were genome-wide association studies (GWAS), which showed different results. Furthermore, none of the SNPs investigated in candidate gene studies were identified in GWAS. In candidate gene studies, the most widely studied SNPs were ALOX5 (tandem repeats of the Sp1-binding domain and rs2115819), LTC4S-444A/C (rs730012), and SLCO2B1 (rs12422149), with relatively inconsistent conclusions. LTC4S-444A/C polymorphism did not show a significant effect in our meta-analysis (AA vs. AC (or AC + CC): −0.06, 95%CI: −0.16 to 0.05, p = 0.31). AA homozygotes had smaller improvements in parameters pertaining to lung functions (−0.14, 95%CI: −0.23 to −0.05, p = 0.002) in a subgroup of patients with non-selective CysLT receptor antagonists and patients without inhaled corticosteroids (ICS) (−0.11, 95%CI: −0.14 to −0.08, p < 0.00001), but not in other subgroups. Variability exists in the pharmacogenomics of LTMs treatment response. Our meta-analysis and systematic review found that LTC4S-444A/C may influence the treatment response of patients taking non-selective CysLT receptor antagonists for asthma, and patients taking LTMs not in combination with ICS for asthma. Future studies are needed to validate the pharmacogenomic influence on LTMs response.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xinyi Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Congxiao Han
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Yuchun Cai
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Sicong Li
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaowen Hu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Caiying Wu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaodong Guan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Christine Lu
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA;
| | - Xiaoyan Nie
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| |
Collapse
|
2
|
Pharmacogenomics and Pediatric Asthmatic Medications. JOURNAL OF RESPIRATION 2022. [DOI: 10.3390/jor2010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asthma is a respiratory condition often stemming from childhood, characterized by difficulty breathing and/or chest tightness. Current treatment options for both adults and children include beta-2 agonists, inhaled corticosteroids (ICS), and leukotriene modifiers (LTM). Despite recommendations by the Global Initiative for Asthma, a substantial number of patients are unresponsive to treatment and unable to control symptoms. Pharmacogenomics have increasingly become the front line of precision medicine, especially with the recent use of candidate gene and genome- wide association studies (GWAS). Screening patients preemptively could likely decrease adverse events and therapeutic failure. However, research in asthma, specifically in pediatrics, has been low. Although numerous adult trials have evaluated the impact of pharmacogenomics and treatment response, the lack of evidence in children has hindered progress towards clinical application. This review aims to discuss the impact of genetic variability and response to asthmatic medications in the pediatric population.
Collapse
|
3
|
O'Carroll O, McCarthy C, Butler MW. Treatments for poorly controlled asthma. BMJ 2021; 375:n2355. [PMID: 34607802 DOI: 10.1136/bmj.n2355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Orla O'Carroll
- Department of Respiratory and Sleep Medicine, St Vincent's University Hospital, Dublin, Republic of Ireland
| | - Cormac McCarthy
- Department of Respiratory and Sleep Medicine, St Vincent's University Hospital, Dublin, Republic of Ireland
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Marcus W Butler
- Department of Respiratory and Sleep Medicine, St Vincent's University Hospital, Dublin, Republic of Ireland
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
4
|
García-Menaya JM, Cordobés-Durán C, García-Martín E, Agúndez JAG. Pharmacogenetic Factors Affecting Asthma Treatment Response. Potential Implications for Drug Therapy. Front Pharmacol 2019; 10:520. [PMID: 31178722 PMCID: PMC6537658 DOI: 10.3389/fphar.2019.00520] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/25/2019] [Indexed: 12/27/2022] Open
Abstract
Asthma is a frequent disease, mainly characterized by airway inflammation, in which drug therapy is crucial in its management. The potential of pharmacogenomics testing in asthma therapy has been, to date, little explored. In this review, we discuss pharmacogenetic factors affecting asthma treatment, both related to drugs used as controller medications for regular maintenance, such as inhaled corticosteroids, anti-leukotriene agents, long-acting beta-agonists, and the new biologic agents used to treat severe persistent asthma. In addition, we discuss current pharmacogenomics knowledge for rescue medications provided to all patients for as-needed relief, such as short-acting beta-agonists. Evidence for genetic variations as a factor related to drugs response has been provided for the following genes and groups of drugs: Inhaled corticosteroids: FCER2; anti-leukotriene agents: ABCC1, and LTC4S; beta-agonists: ADRB2. However, the following genes require further studies confirming or rejecting association with the response to asthma therapy: ADCY9, ALOX5, ARG1, ARG2, CRHR1, CRHR2, CYP3A4, CYP3A5, CYSLTR1, CYSLTR2, GLCCI1, IL4RA, LTA4H, ORMDL3, SLCO2B1, SPATS2L, STIP1, T, TBX21, THRA, THRB, and VEGFA. Although only a minority of these genes are, at present, listed as associated with drugs used in asthma therapy, in the Clinical Pharmacogenomics Implementation Consortium gene-drug pair list, this review reveals that sufficient evidence to start testing the potential of clinical pharmacogenomics in asthma therapy already exists. This evidence supports the inclusion in pilot pharmacogenetics tests of at least four genes. Hopefully these tests, if proven useful, will increase the efficiency and the safety of asthma therapy.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
5
|
Abstract
Human beings come in all shapes and sizes. Heterogeneity makes life interesting, but leads to inter-individual variation in disease susceptibility and response to therapy. One major health challenge is to develop "personalised medicine"; therapeutic interventions tailored to an individual to ensure optimal treatment of disease. Asthma is a heterogeneous disease with several different phenotypes triggered by multiple gene-environment interactions. Inhaled corticosteroids and β2-agonists have been the mainstay asthma therapies for 30 years, but they are not effective in all patients, while high costs and side-effects also drive the need for better targeted treatment of asthma. Pharmacogenetics is the study of variations in the genetic code for proteins in signaling pathways targeted by pharmacological therapies. Biomarkers are biological markers obtained from patients that can aid in asthma diagnosis, prediction of treatment response, and monitoring of disease control. This review presents a broad discussion of the use of genetic profiling and biomarkers to better diagnose, monitor, and tailor the treatment of asthmatics. We also discuss possible future developments in personalised medicine, including the construction of artificially engineered airway tissues containing a patient's own cells for use as personalised drug-testing tools.
Collapse
|
6
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol Rev 2011; 63:539-84. [PMID: 21771892 DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The seven-transmembrane G protein-coupled receptors activated by leukotrienes are divided into two subclasses based on their ligand specificity for either leukotriene B(4) or the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)). These receptors have been designated BLT and CysLT receptors, respectively, and a subdivision into BLT(1) and BLT(2) receptors and CysLT(1) and CysLT(2) receptors has been established. However, recent findings have also indicated the existence of putative additional leukotriene receptor subtypes. Furthermore, other ligands interact with the leukotriene receptors. Finally, leukotrienes may also activate other receptor classes, such as purinergic receptors. The aim of this review is to provide an update on the pharmacology, expression patterns, and pathophysiological roles of the leukotriene receptors as well as the therapeutic developments in this area of research.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cho SH. Pharmacogenomic approaches to asthma treatment. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2010; 2:177-82. [PMID: 20592916 PMCID: PMC2892049 DOI: 10.4168/aair.2010.2.3.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/07/2010] [Indexed: 11/20/2022]
Abstract
Major classes of medication in asthma management include bronchodilating beta2-agonists, anti-inflammatory inhaled corticosteroids, leukotriene modifiers and theophyllines. However, all asthmatics do not respond to the same extent to a given medication. Available data suggest that a substantial range of individual variability, as much as 70%, may be due to genetic characteristics of each patient. Pharmacogenomics offers the potential to optimize medications for individual asthmatics by using genetic information to improve efficacy or avoid adverse effects. The best-studied case of the potential contribution of pharmacogenomics to treatment response in asthma comes from studies on human beta2 adrenergic receptors. In addition, genetic variation in beta2-adrenergic receptor (Arg16Gly) may predict response to anticholinergics for the treatment of asthma. In case of inhaled corticosteroids, a recent investigation using a traditional SNP-based approach identified a gene for corticotropin releasing hormone receptor 1 as a potential marker of response. Another major pathway that has been investigated is the pathway underlying response to cysteinyl leukotriene receptor antagonist. It is likely that in the near future, pharmacogenomic approaches based on individual genetic information will be introduced into an asthma treatment guideline and this guideline will allow us to identify those who have the best chance to respond to a specific medication.
Collapse
Affiliation(s)
- Sang-Heon Cho
- Division of Asthma, Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Naylor MG, Weiss ST, Lange C. Recommendations for using standardised phenotypes in genetic association studies. Hum Genomics 2009; 3:308-19. [PMID: 19706362 PMCID: PMC3525193 DOI: 10.1186/1479-7364-3-4-308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Genetic association studies of complex traits often rely on standardised quantitative phenotypes, such as percentage of predicted forced expiratory volume and body mass index to measure an underlying trait of interest (eg lung function, obesity). These phenotypes are appealing because they provide an easy mechanism for comparing subjects, although such standardisations may not be the best way to control for confounders and other covariates. We recommend adjusting raw or standardised phenotypes within the study population via regression. We illustrate through simulation that optimal power in both population- and family-based association tests is attained by using the residuals from within-study adjustment as the complex trait phenotype. An application of family-based association analysis of forced expiratory volume in one second, and obesity in the Childhood Asthma Management Program data, illustrates that power is maintained or increased when adjusted phenotype residuals are used instead of typical standardised quantitative phenotypes.
Collapse
Affiliation(s)
- Melissa G Naylor
- Department of Biostatistics, Harvard University, Boston, MA, USA.
| | | | | |
Collapse
|
9
|
Grzelewski T, Stelmach I. Exercise-induced bronchoconstriction in asthmatic children: a comparative systematic review of the available treatment options. Drugs 2009; 69:1533-53. [PMID: 19678711 DOI: 10.2165/11316720-000000000-00000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this article is to critically review the efficacy and safety data from randomized controlled trials (RCTs) using inhaled corticosteroids (ICSs), long- or short-acting beta(2)-adrenoceptor agonists (LABAs, SABAs), parasympatholytics and oral leukotriene receptor antagonists in the management of exercise-induced bronchoconstriction (EIB) in children with persistent asthma (EIA). The studies with sufficient information on patient characteristics and outcomes were chosen using a MEDLINE search. Results from the individual searches were combined and repeated. Studies were also found by reviewing the reference lists of the articles not included in this review. Studies focusing solely on individuals with asthma and other allergic co-morbidities (i.e. a degree of bronchial reversibility) were considered in this review. To make the paper evidence-based, the design and the quality of different studies were assessed employing the Sign criteria (evidence level [EL] and grades of recommendation [GR]). No additional statistical analyses were performed. Most of studies included paediatric patients with underlying EIA. We need to distinguish children with recurrent asthma symptoms in whom EIB is also present (patients with EIA) from asthmatic subjects whose symptoms appear only as a result of exercise (patients with EIB). Further controller treatment is indicated in patients with EIA and further reliever treatment in patients with EIB. ICSs are the first-choice controller drugs for EIA in children with persistent asthma (Sign grade of recommendation [GR]:A). In children with EIA without complete control with ICSs, SABAs (GR:A), leukotriene receptor antagonists (LTRAs) [GR:A] or LABAs (GR:A) may be added to gain control. Treatment with relievers such as SABAs (GR:A), parasympatholytics (GR:B) or, eventually, LABAs (GR:A), administered 10-15 minutes before exercise is the most preferable method of preventing EIB symptoms in children; however, not as monotherapy in children with EIA. The disadvantages and controversy relating to inhaled beta(2)-adrenoceptor agonist use lie in the development of tolerance to their effect when they are used on a regular basis, and the possibility of a resulting underuse of ICSs in patients with EIA. Researchers and guidelines recommend that if any patient requires treatment with a beta(2)-adrenoceptor agonist more than twice weekly, a low dose of ICSs should be administered. Inhaled parasympatholytics may be effective as preventive relievers in some children with EIB or EIA, especially among those with increased vagal activity. LTRAs have a well balanced efficacy-safety profile in preventing the occurrence of EIB symptoms in children. Compared with LABAs, LTRAs produce persistent attenuation of EIB and possess an additional effect with rescue SABA therapy in persistent asthmatic patients with EIA. A disadvantage of LTRAs is a non-response phenomenon. There are still insufficient data on the efficacy-safety profiles of ICS/LABA combination drugs in the treatment of EIA in children to recommend this treatment without caution. Safety profiles of inhaled SABAs, anticholinergics and montelukast in approved dosages seem sufficient enough to recommend use of these drugs in the prevention of EIB symptoms in children. Many researchers agree that treatment of EIA in children should always be individualized.
Collapse
Affiliation(s)
- Tomasz Grzelewski
- N. Copernicus Hospital, Department of Pediatrics and Allergy, Medical University of Lodz, 65 Pabianicka Str., Lodz, Poland.
| | | |
Collapse
|
10
|
Carver TW. Exercise-induced asthma: critical analysis of the protective role of montelukast. J Asthma Allergy 2009; 2:93-103. [PMID: 21437147 PMCID: PMC3048606 DOI: 10.2147/jaa.s7321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Indexed: 11/29/2022] Open
Abstract
Exercise-induced asthma/exercise-induced bronchospasm (EIA/EIB) is a prevalent and clinically important disease affecting young children through older adulthood. These terms are often used interchangeably and the differences are not clearly defined in the literature. The pathogenesis of EIA/EIB may be different in those with persistent asthma compared to those with exercise-induced symptoms only. The natural history of EIA is unclear and may be different for elite athletes. Leukotriene biology has helped the understanding of EIB. The type and intensity of exercise are important factors for EIB. Exercise participation is necessary for proper development and control of EIA is recommended. Symptoms of EIB should be confirmed by proper testing. Biologic markers may also be helpful in diagnosis. Not all exercise symptoms are from EIB. Many medication and nonpharmacologic treatments are available. Asthma education is an important component of managing EIA. Many medications have been tested and the comparisons are complicated. Montelukast is a US Food and Drug Administration-approved asthma and EIB controller and has a number of potential advantages to other asthma medications including short onset of action, ease of use, and lack of tolerance. Not all patients improve with montelukast and rescue medication should be available.
Collapse
|