1
|
Rao Z, Zhang S, Xu W, Huang P, Xiao X, Hu X. Early Recognition of Secondary Asthma Caused by Lower Respiratory Tract Infection in Children Based on Multi-Omics Signature: A Retrospective Cohort Study. Int J Gen Med 2024; 17:6229-6241. [PMID: 39703797 PMCID: PMC11656193 DOI: 10.2147/ijgm.s498965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Objective To explore the types of pathogens causing lower respiratory tract infections (LTRIs) in children and construction of a predictive model for monitoring secondary asthma caused by LTRIs. Methods Seven hundred and seventy-five children with LTRIs treated from June 2017 to July 2024 were selected as research subjects. Bacterial isolation and culture were performed on all children, and drug sensitivity tests were conducted on the isolated pathogens; And according to whether the child developed secondary asthma during treatment, they were divided into asthma group (n = 116) and non-asthma group (n = 659); Using logistic regression model to analyze the risk factors affecting secondary asthma in children with LTRIs, and establishing machine learning (ie nomogram and decision tree) prediction models; Using ROC curve analysis machine learning algorithms to predict AUC values, sensitivity, and specificity of secondary asthma in children with LTRIs. Results 792 pathogenic bacteria were isolated from 775 children with LTRIs through bacterial culture, including 261 Gram positive bacteria (32.95%) and 531 Gram negative bacteria (67.05%). Logistic regression model analysis showed that Glycerophospholipids, Sphingolipids and radiomics characteristics were risk factors for secondary asthma in children with LTRIs (P < 0.05). The AUC, sensitivity, and specificity of nomogram prediction for secondary asthma in children with LTRIs were 0.817(95CI: 0.760-0.874), 82.3%, and 76.6%, respectively; The AUC of decision tree prediction for secondary asthma in children with LTRIs is 0.926(95% CI: 0.869-0.983), with a sensitivity of 96.7% and a specificity of 87.8%. Conclusion LTRIs in children are mainly caused by Staphylococcus aureus, Streptococcus pneumoniae, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa; In addition, machine learning combined with multi-omics prediction models has shown good ability in predicting LTRIs combined with asthma, providing a non-invasive and effective method for clinical decision-making.
Collapse
Affiliation(s)
- Zhihui Rao
- Department of Pediatric Comprehensive Internal Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, People’s Republic of China
| | - Shuqin Zhang
- Department of Pediatric Comprehensive Internal Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, People’s Republic of China
| | - Wenlin Xu
- Department of Pediatric Comprehensive Internal Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, People’s Republic of China
| | - Pan Huang
- Department of Pediatric Comprehensive Internal Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, People’s Republic of China
| | - Xiaofei Xiao
- Department of Pediatric Comprehensive Internal Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, People’s Republic of China
| | - Xiuxiu Hu
- Department of Pediatric Comprehensive Internal Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, People’s Republic of China
| |
Collapse
|
2
|
Gan PXL, Zhang S, Fred Wong WS. Targeting reprogrammed metabolism as a therapeutic approach for respiratory diseases. Biochem Pharmacol 2024; 228:116187. [PMID: 38561090 DOI: 10.1016/j.bcp.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid β-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Shanshan Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| |
Collapse
|
3
|
Wang K, Wang L, Zhao G, Liu Y, Wang F, Song H, Sun Y, Zhou Z, Lu X, Hu H, Cui H. Mechanistic study of salidroside on ovalbumin-induced asthmatic model mice based on untargeted metabolomics analysis. Food Funct 2023; 14:413-426. [PMID: 36515134 DOI: 10.1039/d2fo02225g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Salidroside (SAL) is a natural component derived from Rhodiola rosea and is well known for its wide range of biological activities such as its anti-inflammatory and anti-oxidative properties. However, its effects and mechanisms of action related to asthma have not been well explored yet. Recent studies have found that changes in host metabolism are closely related to the progression of asthma. Many natural components can ameliorate asthma by affecting host metabolism. The use of untargeted metabolomics can allow for a better understanding of the metabolic regulatory mechanisms of herbs on asthma. This study aimed to demonstrate the anti-asthmatic effects and metabolic regulatory mechanisms of SAL. In this study, the therapeutic effects of SAL on asthmatic mice were tested at first. Secondly, the effects of SAL on the airway inflammatory reaction, oxidative stress, and airway remodeling were investigated. Finally, untargeted metabolomics analysis was used to explore the influence of SAL on lung metabolites. The results showed that SAL had a significant therapeutic effect on asthmatic model mice. Moreover, SAL treatment lowered interleukin (IL)-4, IL-5, and IL-13 levels but elevated interferon gamma (IFN-γ) and IL-10 levels in bronchoalveolar lavage fluid (BALF). Additionally, it also increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and decreased methane dicarboxylic aldehyde (MDA) levels in the lungs. Besides, SAL-treated mice showed decreased expression of smooth muscle actin (α-SMA), matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), and transforming growth factor-beta 1 (TGF-β1) in the lung. Untargeted metabolomics analysis showed 31 metabolites in the lungs that were influenced by SAL. These metabolites were related to pyrimidine metabolism, steroid hormone biosynthesis, and tricarboxylic acid (TCA) cycle. In conclusion, SAL treatment can reduce the inflammatory response, oxidative stress, and airway remodeling in asthmatic model mice. The mechanism of SAL in the treatment of asthma may be related to the regulation of pyrimidine metabolism, steroid hormone biosynthesis, and the TCA cycle. Further studies can be carried out using targeted metabolomics and in vitro models to deeply elucidate the anti-inflammatory and anti-oxidative mechanisms of SAL on asthma based on regulating metabolism.
Collapse
Affiliation(s)
- Kun Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Li Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Guojing Zhao
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Yong Liu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Fengchan Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Huan Song
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Yin Sun
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Zhaoshan Zhou
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Xuechao Lu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Haibo Hu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Shandong, China.
| |
Collapse
|
4
|
Huang F, Yu J, Lai T, Luo L, Zhang W. The Combination of Bioinformatics Analysis and Untargeted Metabolomics Reveals Potential Biomarkers and Key Metabolic Pathways in Asthma. Metabolites 2022; 13:25. [PMID: 36676950 PMCID: PMC9860906 DOI: 10.3390/metabo13010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Asthma is a complex chronic airway inflammatory disease that seriously impacts patients' quality of life. As a novel approach to exploring the pathogenesis of diseases, metabolomics provides the potential to identify biomarkers of asthma host susceptibility and elucidate biological pathways. The aim of this study was to screen potential biomarkers and biological pathways so as to provide possible pharmacological therapeutic targets for asthma. In the present study, we merged the differentially expressed genes (DEGs) of asthma in the GEO database with the metabolic genes obtained by Genecard for bioinformatics analysis and successfully screened out the metabolism-related hub genes (HIF1A, OCRL, NNMT, and PER1). Then, untargeted metabolic techniques were utilized to reveal HDM-induced metabolite alterations in 16HBE cells. A total of 45 significant differential metabolites and 5 differential metabolic pathways between the control group and HDM group were identified based on the OPLS-DA model. Finally, three key metabolic pathways, including glycerophospholipid metabolism, galactose metabolism, and alanine, aspartate, and glutamate metabolism, were screened through the integrated analysis of bioinformatics data and untargeted metabolomics data. Taken together, these findings provide valuable insights into the pathophysiology and targeted therapy of asthma and lay a foundation for further research.
Collapse
Affiliation(s)
- Fangfang Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Graduate School, Guangdong Medical University, Zhanjiang 524023, China
| | - Jinjin Yu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Tianwen Lai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhen Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Kim J, Im YN, Chung Y, Youm J, Im SY, Han MK, Lee HK. Glutamine deficiency shifts the asthmatic state toward neutrophilic airway inflammation. Allergy 2022; 77:1180-1191. [PMID: 34601745 PMCID: PMC9293426 DOI: 10.1111/all.15121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022]
Abstract
Background The administration of L‐glutamine (Gln) suppresses allergic airway inflammation via the rapid upregulation of MAPK phosphatase (MKP)‐1, which functions as a negative regulator of inflammation by deactivating p38 and JNK mitogen‐activated protein kinases (MAPKs). However, the role of endogenous Gln remains to be elucidated. Therefore, we investigated the mechanism by which endogenous Gln regulates MKP‐1 induction and allergic airway inflammation in an ovalbumin‐based murine asthma model. Methods We depleted endogenous Gln levels using L‐γ‐glutamyl‐p‐nitroanilide (GPNA), an inhibitor of the Gln transporter ASCT2 and glutamine synthetase small interfering siRNA. Lentivirus expressing MKP‐1 was injected to achieve overexpression of MKP‐1. Asthmatic phenotypes were assessed using our previously developed ovalbumin‐based murine model, which is suitable for examining sequential asthmatic events, including neutrophil infiltration. Gln levels were analyzed using a Gln assay kit. Results GPNA or glutamine synthetase siRNA successfully depleted endogenous Gln levels. Importantly, homeostatic MKP‐1 induction did not occur at all, which resulted in prolonged p38 MAPK and cytosolic phospholipase A2 (cPLA2) phosphorylation in Gln‐deficient mice. Gln deficiency augmented all examined asthmatic reactions, but it exhibited a strong bias toward increasing the neutrophil count, which was not observed in MKP‐1‐overexpressing lungs. This neutrophilia was inhibited by a cPLA2 inhibitor and a leukotriene B4 inhibitor but not by dexamethasone. Conclusion Gln deficiency leads to the impairment of MKP‐1 induction and activation of p38 MAPK and cPLA2, resulting in the augmentation of neutrophilic, more so than eosinophilic, airway inflammation.
Collapse
Affiliation(s)
- June‐Mo Kim
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Yoo Na Im
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Yun‐Jo Chung
- Center for University‐wide Research Facilities Jeonbuk National University Medical School Jeonju South Korea
| | - Jung‐ho Youm
- Department of Preventive Medicine Jeonbuk National University Medical School Jeonju South Korea
| | - Suhn Young Im
- Department of Biological Sciences College of Natural Sciences Chonnam National University Gwangju South Korea
| | - Myung Kwan Han
- Department of Microbiology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Hern Ku Lee
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| |
Collapse
|
6
|
Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy? IMMUNOMETABOLISM 2021; 3:e210031. [PMID: 34729242 PMCID: PMC7611926 DOI: 10.20900/immunometab20210031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pregnancy is characterised by metabolic changes that occur to support the growth and development of the fetus over the course of gestation. These metabolic changes can be classified into two distinct phases: an initial anabolic phase to prepare an adequate store of substrates and energy which are then broken down and used during a catabolic phase to meet the energetic demands of the mother, placenta and fetus. Dynamic readjustment of immune homeostasis is also a feature of pregnancy and is likely linked to the changes in energy substrate utilisation at this time. As cellular metabolism is increasingly recognised as a key determinant of immune cell phenotype and function, we consider how changes in maternal metabolism might contribute to T cell plasticity during pregnancy.
Collapse
|
7
|
Li X, Zhao F, Wang A, Cheng P, Chen H. Role and mechanisms of autophagy in lung metabolism and repair. Cell Mol Life Sci 2021; 78:5051-5068. [PMID: 33864479 PMCID: PMC11072280 DOI: 10.1007/s00018-021-03841-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Mammalian lungs are metabolically active organs that frequently encounter environmental insults. Stress responses elicit protective autophagy in epithelial barrier cells and the supportive niche. Autophagy promotes the recycling of damaged intracellular organelles, denatured proteins, and other biological macromolecules for reuse as components required for lung cell survival. Autophagy, usually induced by metabolic defects, regulates cellular metabolism. Autophagy is a major adaptive response that protects cells and organisms from injury. Endogenous region-specific stem/progenitor cell populations are found in lung tissue, which are responsible for epithelial repair after lung damage. Additionally, glucose and fatty acid metabolism is altered in lung stem/progenitor cells in response to injury-related lung fibrosis. Autophagy deregulation has been observed to be involved in the development and progression of other respiratory diseases. This review explores the role and mechanisms of autophagy in regulating lung metabolism and epithelial repair.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
8
|
Stark JM, Tibbitt CA, Coquet JM. The Metabolic Requirements of Th2 Cell Differentiation. Front Immunol 2019; 10:2318. [PMID: 31611881 PMCID: PMC6776632 DOI: 10.3389/fimmu.2019.02318] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Upon activation, naïve CD4+ T cells differentiate into a number of specialized T helper (Th) cell subsets. Th2 cells are central players in immunity to helminths and are implicated in mediating the inflammatory pathology associated with allergies. The differentiation of Th2 cells is dependent on transcription factors such as GATA3 and STAT6, which prime Th2 cells for the secretion of interleukin- (IL-) 4, IL-5, and IL-13. Several lines of work now suggest that differentiating Th2 cells in the lymph node are potent IL-4 cytokine producers, but do not become competent IL-5- and IL-13-producing cells until after receiving cues from non-lymphoid tissue. It is evident that Th2 cells that enter tissues undergo considerable changes in chromatin architecture and gene expression, and that over this time, the metabolic requirements of these cells change considerably. Herein, we discuss the metabolic requirements of Th2 cells during their early and late differentiation, focusing on the impact of glucose and lipid metabolism, mTOR activation, the nuclear receptor PPAR-γ and several metabolites.
Collapse
Affiliation(s)
- Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher A Tibbitt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Kim HK, Song CH, Bae YS, Im SY, Lee HK. Glutamine Prevents Late-Phase Anaphylaxis via MAPK Phosphatase 1-Dependent Cytosolic Phospholipase A 2 Deactivation. Int Arch Allergy Immunol 2016; 171:61-70. [DOI: 10.1159/000452103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
|
10
|
Ayush O, Jin ZW, Kim HK, Shin YR, Im SY, Lee HK. Glutamine up-regulates MAPK phosphatase-1 induction via activation of Ca 2+→ ERK cascade pathway. Biochem Biophys Rep 2016; 7:10-19. [PMID: 28955885 PMCID: PMC5613282 DOI: 10.1016/j.bbrep.2016.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/25/2022] Open
Abstract
The non-essential amino acid L-glutamine (Gln) displays potent anti-inflammatory activity by deactivating p38 mitogen activating protein kinase and cytosolic phospholipase A2 via induction of MAPK phosphatase-1 (MKP-1) in an extracellular signal-regulated kinase (ERK)-dependent way. In this study, the mechanism of Gln-mediated ERK-dependency in MKP-1 induction was investigated. Gln increased ERK phosphorylation and activity, and phosphorylations of Ras, c-Raf, and MEK, located in the upstream pathway of ERK, in response to lipopolysaccharidein vitro and in vivo. Gln-induced dose-dependent transient increases in intracellular calcium ([Ca2+]i) in MHS macrophage cells. Ionomycin increased [Ca2+]i and activation of Ras → ERK pathway, and MKP-1 induction, in the presence, but not in the absence, of LPS. The Gln-induced pathways involving Ca2+→ MKP-1 induction were abrogated by a calcium blocker. Besides Gln, other amino acids including L-phenylalanine and l-cysteine (Cys) also induced Ca2+ response, activation of Ras → ERK, and MKP-1 induction, albeit to a lesser degree. Gln and Cys were comparable in suppression against 2, 4-dinitrofluorobenzene-induced contact dermatitis. Gln-mediated, but not Cys-mediated, suppression was abolished by MKP-1 small interfering RNA. These data indicate that Gln induces MKP-1 by activating Ca2+→ ERK pathway, which plays a key role in suppression of inflammatory reactions.
Collapse
Key Words
- AP-1, activating protein 1
- Ala, alanine
- Asp, aspartate
- BAPTA, 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetraacetoxymethylester
- CD, contact dermatitis
- CaM, calmodulin
- CaR, Ca2+-sensing receptor
- DMSO, dimethyl sulfoxide
- DNFB, 1-fluoro-2,4-dinitrobenzene
- ERK, extracellular signal-regulated kinase
- ESR, ear swelling response
- Gln, L-glutamine
- Glu, glutamate
- Gly, glycine
- H&E, hematoxylin and eosin
- JNK, c-Jun N-terminal kinase
- L-Glutamine
- LPS, lipopolysaccharides
- MAPK Phosphatase-1
- MAPK, mitogen activated protein kinase
- MKP-1, MAPK phosphatase-1
- Mitogen-activated protein kinase
- PEI, polyethyleneimine
- Ras/c-Raf/MEK/ERK, extracellular-signal-regulated kinase
- [Ca2+]i, intracellular calcium concentration
- cPLA2, cytoplasmic phospholipase A2
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Otgonzaya Ayush
- Department of Dermatology, Medical University, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Zhe Wu Jin
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, YanJi City, Jilin Province, China
| | - Hae-Kyoung Kim
- Departments of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yu-Rim Shin
- Biofoods Story, Inc, 477 Jeonjucheon-seoro, Wansan-gu, Jeonju, Jeonbuk 560-821, Republic of Korea
| | - Suhn-Young Im
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hern-Ku Lee
- Departments of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
11
|
Exogenous Glutamine in Respiratory Diseases: Myth or Reality? Nutrients 2016; 8:76. [PMID: 26861387 PMCID: PMC4772040 DOI: 10.3390/nu8020076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Several respiratory diseases feature increased inflammatory response and catabolic activity, which are associated with glutamine depletion; thus, the benefits of exogenous glutamine administration have been evaluated in clinical trials and models of different respiratory diseases. Recent reviews and meta-analyses have focused on the effects and mechanisms of action of glutamine in a general population of critical care patients or in different models of injury. However, little information is available about the role of glutamine in respiratory diseases. The aim of the present review is to discuss the evidence of glutamine depletion in cystic fibrosis (CF), asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and lung cancer, as well as the results of exogenous glutamine administration in experimental and clinical studies. Exogenous glutamine administration might be beneficial in ARDS, asthma, and during lung cancer treatment, thus representing a potential therapeutic tool in these conditions. Further experimental and large randomized clinical trials focusing on the development and progression of respiratory diseases are necessary to elucidate the effects and possible therapeutic role of glutamine in this setting.
Collapse
|
12
|
Han F, Li G, Dai S, Huang J. Genome-wide metabolic model to improve understanding of CD4+ T cell metabolism, immunometabolism and application in drug design. MOLECULAR BIOSYSTEMS 2016; 12:431-43. [DOI: 10.1039/c5mb00480b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Model-based investigation of the metabolism and immunometabolism of CD4+ T cells (CD4T1670) and the application of CD4T1670 in drug development.
Collapse
Affiliation(s)
- Feifei Han
- State Key Laboratory of Genetic Resources and Evolution
- Kunming Institute of Zoology
- Chinese Academy of Sciences
- Kunming
- China
| | - Gonghua Li
- State Key Laboratory of Genetic Resources and Evolution
- Kunming Institute of Zoology
- Chinese Academy of Sciences
- Kunming
- China
| | - Shaoxing Dai
- State Key Laboratory of Genetic Resources and Evolution
- Kunming Institute of Zoology
- Chinese Academy of Sciences
- Kunming
- China
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution
- Kunming Institute of Zoology
- Chinese Academy of Sciences
- Kunming
- China
| |
Collapse
|
13
|
Lee CH, Kim HK, Jeong JS, Lee YD, Jin ZW, Im SY, Lee HK. Mechanism of glutamine inhibition of cytosolic phospholipase a2 (cPLA2 ): Evidence of physical interaction between glutamine-Induced mitogen-activated protein kinase phosphatase-1 and cPLA2. Clin Exp Immunol 2015; 180:571-80. [PMID: 25599677 DOI: 10.1111/cei.12585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/29/2022] Open
Abstract
Non-essential amino acid L-glutamine (Gln) possesses anti-inflammatory activity via deactivating cytosolic phospholipase A2 (cPLA2 ). We showed previously that Gln deactivated cPLA2 indirectly via dephosphorylating p38 mitogen-activated protein kinase (MAPK), the major kinase for cPLA2 phosphorylation, through inducing MAPK phosphatase-1 (MKP-1). In this study, we investigated the precise mechanism underlying Gln deactivation of cPLA2 . In lipopolysaccharide (LPS)-treated mice, Gln injection resulted in dephosphorylation of phosphorylated cPLA2 (p-cPLA2 ), which coincided with rapid Gln induction of MKP-1. MKP-1 small interfering RNA (siRNA) abrogated the ability of Gln to induce MKP-1 as well as the dephosphorylation of cPLA2 . Co-immunoprecipitation and in-situ proximity ligation assay revealed a physical interaction between MKP-1 and p-cPLA2 . In a murine model of allergic asthma, we also demonstrated the physical interaction between MKP-1 and p-cPLA2 . Furthermore, Gln suppressed various allergic asthma phenotypes, such as neutrophil and eosinophil recruitments into the airway, airway levels of T helper type 2 (Th2) cytokines [interleukin (IL)-4, IL-5 and IL-13], airway hyperresponsiveness, mucin production and metabolites (leukotriene B4 and platelet-activating factor) through inhibiting cPLA2 in a MKP-1-dependent manner. These data suggest that MKP-1 uses cPLA2 , in addition to p38, as a substrate, which further potentiates the anti-inflammatory action of Gln.
Collapse
Affiliation(s)
- C-H Lee
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Korea
| | - H-K Kim
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Korea
| | - J-S Jeong
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Korea
| | - Y-D Lee
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Korea
| | - Z Wu Jin
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, YanJi City, China
| | - S-Y Im
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Korea
| | - H-K Lee
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
14
|
Song EK, Yim JM, Yim JY, Song MY, Rho HW, Yim SK, Han YH, Jeon SY, Kim HS, Yhim HY, Lee NR, Kwak JY, Sohn MH, Park HS, Jang KY, Yim CY. Glutamine protects mice from acute graft-versus-host disease (aGVHD). Biochem Biophys Res Commun 2013; 435:94-9. [DOI: 10.1016/j.bbrc.2013.04.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
|
15
|
Lee CH, Kim HK, Kim JM, Ayush O, Im SY, Oh DK, Lee HK. Glutamine suppresses airway neutrophilia by blocking cytosolic phospholipase A(2) via an induction of MAPK phosphatase-1. THE JOURNAL OF IMMUNOLOGY 2012; 189:5139-46. [PMID: 23109722 DOI: 10.4049/jimmunol.1201599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils are inflammatory cells that may contribute in a crucial way to the pathophysiology of steroid-resistant severe asthma. We previously reported that the nonessential amino acid l-glutamine (Gln) suppressed the recruitment of neutrophils into the airway in a murine model of asthma. In this study, we investigated the mechanisms by which Gln exerts beneficial effects in airway neutrophilia. We used the model we previously developed, which is suitable for examining sequential early asthmatic events, including neutrophil infiltration. Gln suppressed airway neutrophilia in a CXC chemokine-independent way. Airway neutrophilia was associated with cytosolic phospholipase A(2) (cPLA(2)) and 5-lipoxygenase (5-LO) activities. p38 MAPK, the upstream pathway of cPLA(2) and 5-LO, played a key role in inducing airway neutrophilia. Gln inhibited not only the phosphorylation of cPLA(2) and p38 MAPK but also leukotriene B(4) levels in the airways. Gln induced the early induction of MAPK phosphatase-1 (MKP-1) protein, a negative regulator of p38. MKP-1 small interfering RNA abrogated all the effects of Gln. Our results suggest that pathways involving p38/cPLA(2)/5-LO have a major role in airway neutrophilia. Gln suppresses airway neutrophilia via inhibiting p38 MAPK and its downstream pathways in an MKP-1-dependent way, which may provide a novel therapeutic strategy for pulmonary neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Chang-Hoon Lee
- Department of Immunology, Chonbuk National University Medical School, Jeonju, Chonbuk 561-182, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Glutamine suppresses DNFB-induced contact dermatitis by deactivating p38 mitogen-activated protein kinase via induction of MAPK phosphatase-1. J Invest Dermatol 2012; 133:723-731. [PMID: 23076500 DOI: 10.1038/jid.2012.373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
L-glutamine (Gln) is a nonessential amino acid that is the most abundant amino acid in plasma. Gln has been reported to have an anti-inflammatory activity that involves deactivation of mitogen-activated protein kinases (MAPKs) in a MAPK phosphatase (MKP)-1-dependent manner. This study investigated the role of Gln in the inhibition of DNFB-induced allergic contact dermatitis (CD) in the ears of mice, and specifically the involvement of Gln in p38 MAPK inhibition. Topical application of Gln or the p38 inhibitor, SB202190, suppressed DNFB-induced CD. Gln application inhibited DNFB-induced p38 phosphorylation. Western blot analysis revealed that Gln application resulted in early phosphorylation and protein induction of MKP-1. MKP-1 small interfering RNA (siRNA), but not control siRNA, abrogated Gln-mediated early phosphorylation, protein induction of MKP-1, deactivation of p38, and Gln-mediated suppression of CD. The extracellular signal-regulated kinase (ERK) inhibitor, U0126, blocked Gln-induced MKP-1 phosphorylation and protein induction, as well as Gln suppression of CD. These results suggest that Gln suppresses DNFB-induced CD via deactivation of p38 MAPK through the early induction of MKP-1, the negative regulator of p38, in an ERK-dependent manner.
Collapse
|
17
|
Kim HK, Lee CH, Kim JM, Ayush O, Im SY, Lee HK. Biphasic late airway hyperresponsiveness in a murine model of asthma. Int Arch Allergy Immunol 2012; 160:173-83. [PMID: 23018605 DOI: 10.1159/000341645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nonspecific airway hyperresponsiveness (AHR) is one of the cardinal features of bronchial asthma. Early AHR is caused by chemical mediators released from pulmonary mast cells activated in an IgE-dependent way. However, the mechanism of late AHR remains unclear. METHODS Features of airway allergic inflammation were analyzed, including antigen-induced AHR, using a murine model of asthma. The model was suitable for examining the sequential early molecular events occurring after the initial airway exposure to antigen. RESULTS AHR increased at 10-12 h after airway challenge, followed by the second-phase response, which was larger and broader in resistance at 18-30 h. Pretreatment of sensitized animals with anti-tumor necrosis factor (TNF) before airway challenge or induction of allergic asthma in TNF(-/-) mice resulted in abrogation of the first-phase late AHR. Intratracheal instillation of TNF induced a single peak of AHR at 10 h. IgE and IgG immune complexes induced the development of the first-phase late AHR by TNF production. Pretreatment with cytosolic phospholipase inhibitor and 5-lipoxygenase inhibitors abolished the first-phase late AHR as well as the leukotriene B(4) levels in the airway. CpG-oligodeoxynucleotide (ODN) pretreatment reduced airway levels of Th2 cytokines, eosinophil infiltration and second-phase late AHR. However, CpG-ODN did not reduce TNF levels or the magnitude of first-phase late AHR. CONCLUSION Biphasic late AHR occurs in a murine model of asthma. First- and second-phase late AHR is caused by TNF and Th2 response, respectively.
Collapse
Affiliation(s)
- Hae-Kyoung Kim
- Department of Immunology, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Glutamine suppresses dinitrophenol fluorobenzene-induced allergic contact dermatitis and itching: Inhibition of contact dermatitis by glutamine. J Dermatol Sci 2012; 67:88-94. [DOI: 10.1016/j.jdermsci.2012.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/20/2022]
|
19
|
Fitzpatrick AM, Jones DP, Brown LAS. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 17:375-408. [PMID: 22304503 PMCID: PMC3353819 DOI: 10.1089/ars.2011.4198] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/22/2012] [Accepted: 01/22/2012] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
20
|
van Zwol A, Neu J, van Elburg RM. Long-term effects of neonatal glutamine-enriched nutrition in very-low-birth-weight infants. Nutr Rev 2011; 69:2-8. [DOI: 10.1111/j.1753-4887.2010.00359.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Almqvist C, Bradding PB, Chakir J, Ebo D, Grattan C, Kariyawasam HH, Savilahti E, Scadding GK, Vieths S, Wardlaw AJ, Woodfolk J. Developments in the field of allergy in 2008 through the eyes of Clinical & Experimental Allergy. Clin Exp Allergy 2010; 39:1482-98. [PMID: 19954428 DOI: 10.1111/j.1365-2222.2009.03355.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 2008, many thousands of articles were published on the subject of allergic disease with over 200 reviews, editorials and original papers in Clinical & Experimental Allergy alone. These represent a considerable amount of data and even the most avid reader could only hope to assimilate a small fraction of this knowledge. There is therefore a pressing need for the key messages that emerge from a journal such as Clinical & Experimental Allergy to be summarized by experts in the field in a form that highlights the significance of the developments and sets them in the context of important findings in the field published in other journals. This also has the advantage of making connections between new data in conditions such as asthma, where articles often appear in different sections of the journal. As can be seen from this review, the body of work is diverse both in terms of the disease of interest and the discipline that has been used to investigate it. However, taken as a whole, we hope that the reader will gain a flavour of where the field is mature, where there remain controversies and where the cutting edge is leading.
Collapse
|
22
|
van Zwol A, van den Berg A, Nieuwenhuis EES, Twisk JWR, Fetter WPF, van Elburg RM. Cytokine profiles in 1-yr-old very low-birth-weight infants after enteral glutamine supplementation in the neonatal period. Pediatr Allergy Immunol 2009; 20:467-70. [PMID: 19175893 DOI: 10.1111/j.1399-3038.2008.00813.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a previous study, we found that glutamine-enriched enteral nutrition in 102 very low-birth-weight (VLBW) infants decreased both the incidence of serious neonatal infections and atopic dermatitis during the first year of life. The aims of this follow-up study were to determine whether these beneficial effects are attended by changes in Th(1) and Th(2) cytokine profiles at age 1 yr. Furthermore, we studied changes in cytokine profiles during the first year of life in these VLBW infants. In total, 89 infants were eligible for the follow-up study (12 died, 1 exclusion due to a chromosomal abnormality). Th(1) (IFN-gamma, TNF- alpha and IL-2) and Th(2) cytokine (IL-10, IL-5, and IL-4) profiles following in vitro whole blood stimulation were measured at 1 yr. Cytokine profiles were measured in 59/89 (66%) infants. Glutamine-enriched enteral nutrition in neonatal period did not influence cytokine profiles at 1 yr. Cytokine profiles were not different in infants with and without allergic or infectious diseases. The beneficial effect of glutamine-enriched enteral nutrition on the incidence of serious neonatal infections and atopic dermatitis during the first year of life is not related to changes in the Th(1) and Th(2) cytokine profiles. Both Th(1) and Th(2) cytokine profiles increased during the first year of life in this cohort of VLBW infants.
Collapse
Affiliation(s)
- Annelies van Zwol
- Department of Pediatrics/Division of Neonatology, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Current Opinion in Pulmonary Medicine. Current world literature. Curr Opin Pulm Med 2009; 15:79-87. [PMID: 19077710 DOI: 10.1097/mcp.0b013e32831fb1f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Rousseaux CG. A Review of Glutamate Receptors II: Pathophysiology and Pathology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|