Kesserwan C, Sokolic R, Cowen EW, Garabedian E, Heselmeyer-Haddad K, Lee CCR, Pittaluga S, Ortiz C, Baird K, Lopez-Terrada D, Bridge J, Wayne AS, Candotti F. Multicentric dermatofibrosarcoma protuberans in patients with adenosine deaminase-deficient severe combined immune deficiency.
J Allergy Clin Immunol 2012;
129:762-769.e1. [PMID:
22153773 PMCID:
PMC3294021 DOI:
10.1016/j.jaci.2011.10.028]
[Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND
Dermatofibrosarcoma protuberans (DFSP) is a rare malignant skin tumor associated with a characteristic chromosomal translocation (t[17;22][q22;q13]) resulting in the COL1A1-platelet-derived growth factor β(PDGFB) fusion gene. This malignancy is rarely diagnosed in childhood.
OBJECTIVE
We observed an unexpected high incidence of this DFSP in children affected with adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) and set out to evaluate the association of these 2 clinical entities.
METHODS
Twelve patients with ADA-SCID were evaluated with a complete dermatologic examination and skin biopsy when indicated. Conventional cytogenetic and molecular analyses (fluorescence in situ hybridization, RT-PCR, or both) were performed when possible.
RESULTS
Eight patients were found to have DFSP. Six patients had multicentric involvement (4-15 lesions), primarily of the trunk and extremities. Most lesions presented as 2- to 15-mm, round atrophic plaques. Nodular lesions were present in 3 patients. In all cases CD34 expression was diffusely positive, and diagnosis was confirmed either by means of cytogenetic analysis, molecular testing, or both. The characteristic DFSP-associated translocation, t(17;22)(q22;q13), was identified in 6 patients; results of fluorescence in situ hybridization were positive for fusion of the COL1A1 and PDGFB loci in 7 patients; and RT-PCR showed the COL1A1-PDGFB fusion transcript in 6 patients.
CONCLUSIONS
We describe a previously unrecognized association between ADA-SCID and DFSP with unique features, such as multicentricity and occurrence in early age. We hypothesize that the t(17;22)(q22;q13) translocation that results in dermal overexpression of PDGFB and favors the development of fibrotic tumors might arise because of the known DNA repair defect in patients with ADA-SCID. Although the natural course of DFSP in the setting of ADA-SCID is unknown, this observation should prompt regular screening for DFSP in patients with ADA-SCID.
Collapse