1
|
Dekkers BG, Saad SI, van Spelde LJ, Burgess JK. Basement membranes in obstructive pulmonary diseases. Matrix Biol Plus 2021; 12:100092. [PMID: 34877523 PMCID: PMC8632995 DOI: 10.1016/j.mbplus.2021.100092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022] Open
Abstract
Basement membrane composition is changed in the airways of patients with obstructive airway diseases. Basement membrane changes are linked to disease characteristics in patients. Mechanisms behind the altered BM composition remain to be elucidated. Laminin and collagen IV affect key pathological processes in obstructive airway diseases.
Increased and changed deposition of extracellular matrix proteins is a key feature of airway wall remodeling in obstructive pulmonary diseases, including asthma and chronic obstructive pulmonary disease. Studies have highlighted that the deposition of various basement membrane proteins in the lung tissue is altered and that these changes reflect tissue compartment specificity. Inflammatory responses in both diseases may result in the deregulation of production and degradation of these proteins. In addition to their role in tissue development and integrity, emerging evidence indicates that basement membrane proteins also actively modulate cellular processes in obstructive airway diseases, contributing to disease development, progression and maintenance. In this review, we summarize the changes in basement membrane composition in airway remodeling in obstructive airway diseases and explore their potential application as innovative targets for treatment development.
Collapse
Key Words
- ADAM9, a metalloproteinase domain 9
- ASM, airway smooth muscle
- Airway inflammation
- Airway remodeling
- Asthma
- BM, basement membrane
- COPD, chronic obstructive pulmonary disease
- Chronic obstructive pulmonary disease
- Col IV, collagen IV
- Collagen IV
- ECM, extracellular matrix
- LN, laminin
- Laminin
- MMP, matrix metalloproteinase
- TIMP, tissue inhibitors of metalloproteinase
- Th2, T helper 2
- VSM, vascular smooth muscle
Collapse
Affiliation(s)
- Bart G.J. Dekkers
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Corresponding author at: Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Shehab I. Saad
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Leah J. van Spelde
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| |
Collapse
|
2
|
Jandl K, Mutgan AC, Eller K, Schaefer L, Kwapiszewska G. The basement membrane in the cross-roads between the lung and kidney. Matrix Biol 2021; 105:31-52. [PMID: 34839001 DOI: 10.1016/j.matbio.2021.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The basement membrane (BM) is a specialized layer of extracellular matrix components that plays a central role in maintaining lung and kidney functions. Although the composition of the BM is usually tissue specific, the lung and the kidney preferentially use similar BM components. Unsurprisingly, diseases with BM defects often have severe pulmonary or renal manifestations, sometimes both. Excessive remodeling of the BM, which is a hallmark of both inflammatory and fibrosing diseases in the lung and the kidney, can lead to the release of BM-derived matrikines, proteolytic fragments with distinct biological functions. These matrikines can then influence disease activity at the site of liberation. However, they are also released to the circulation, where they can directly affect the vascular endothelium or target other organs, leading to extrapulmonary or extrarenal manifestations. In this review, we will summarize the current knowledge of the composition and function of the BM and its matrikines in health and disease, both in the lung and in the kidney. By comparison, we will highlight, why the BM and its matrikines may be central in establishing a renal-pulmonary interaction axis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Pharmacology, Medical University of Graz, Graz, Austria
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria; Institute for Lung Health (ILH), Giessen, Germany..
| |
Collapse
|
3
|
Lee HW, Jose CC, Cuddapah S. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases. Semin Cancer Biol 2021; 76:99-109. [PMID: 34058338 PMCID: PMC8627926 DOI: 10.1016/j.semcancer.2021.05.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Nickel compounds are environmental toxicants, prevalent in the atmosphere due to their widespread use in several industrial processes, extensive consumption of nickel containing products, as well as burning of fossil fuels. Exposure to nickel is associated with a multitude of chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. In addition, nickel exposure is implicated in the development of nasal and lung cancers. Interestingly, a common pathogenic mechanism underlying the development of diseases associated with nickel exposure is epithelial-mesenchymal transition (EMT). EMT is a process by which the epithelial cells lose their junctions and polarity and acquire mesenchymal traits, including increased ability to migrate and invade. EMT is a normal and essential physiological process involved in differentiation, development and wound healing. However, EMT also contributes to a number of pathological conditions, including fibrosis, cancer and metastasis. Growing evidence suggest that EMT induction could be an important outcome of nickel exposure. In this review, we discuss the role of EMT in nickel-induced lung diseases and the mechanisms associated with EMT induction by nickel exposure.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA.
| |
Collapse
|
4
|
Dey S, Eapen MS, Chia C, Gaikwad AV, Wark PAB, Sohal SS. Pathogenesis, clinical features of asthma COPD overlap (ACO), and therapeutic modalities. Am J Physiol Lung Cell Mol Physiol 2021; 322:L64-L83. [PMID: 34668439 DOI: 10.1152/ajplung.00121.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both asthma and COPD are heterogeneous diseases identified by characteristic symptoms and functional abnormalities, with airway obstruction common in both diseases. Asthma COPD overlap (ACO) does not define a single disease but is a descriptive term for clinical use that includes several overlapping clinical phenotypes of chronic airways disease with different underlying mechanisms. This literature review was initiated to describe published studies, identify gaps in knowledge, and propose future research goals regarding the disease pathology of ACO, especially the airway remodelling changes and inflammation aspects. Airway remodelling occurs in asthma and COPD, but there are differences in the structures affected and the prime anatomic site at which they occur. Reticular basement membrane thickening and cellular infiltration with eosinophils and T-helper (CD4+) lymphocytes are prominent features of asthma. Epithelial squamous metaplasia, airway wall fibrosis, emphysema, bronchoalveolar lavage (BAL) neutrophilia and (CD8+) T-cytotoxic lymphocyte infiltrations in the airway wall are features of COPD. There is no universally accepted definition of ACO, nor are there clearly defined pathological characteristics to differentiate from asthma and COPD. Understanding etiological concepts within the purview of inflammation and airway remodelling changes in ACO would allow better management of these patients.
Collapse
Affiliation(s)
- Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia.,Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia.,Department of Respiratory and Sleep Medicine John Hunter Hospital, New Lambton Heights, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
5
|
Busch SM, Lorenzana Z, Ryan AL. Implications for Extracellular Matrix Interactions With Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Front Pharmacol 2021; 12:645858. [PMID: 34054525 PMCID: PMC8149957 DOI: 10.3389/fphar.2021.645858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung's regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.
Collapse
Affiliation(s)
- Shana M. Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
The Epithelial-to-Mesenchymal Transition-Like Process Induced by TGF-β1 Enhances Rubella Virus Binding and Infection in A549 Cells via the Smad Pathway. Microorganisms 2021; 9:microorganisms9030662. [PMID: 33806778 PMCID: PMC8004957 DOI: 10.3390/microorganisms9030662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Virus–host cell interactions in rubella virus (RuV) are of great interest in current research in the field, as their mechanism is not yet well understood. By hypothesizing that the epithelial-to-mesenchymal transition (EMT) may play a role in RuV infection, this study aimed to investigate the influence of TGF-β1-induced EMT of human lung epithelial A549 cells on the infectivity of RuV. A549 cells were cultured and treated with TGF-β1 for 1 to 2 days prior to virus infection (with a clinical strain). Viral infectivity was determined by flow cytometry analysis of cells harvested at 24 and 48 h post-infection (hpi) and by titration of supernatants collected at 48 hpi. The results showed that the percentages of the TGF-β1-treated A549 cells that were positive for RuV were at least twofold higher than those of the control, and the viral progeny titers in the supernatants collected at 48 hpi were significantly higher in the treatment group than in the control group. In addition, the virus binding assay showed a strong increase (more than threefold) in the percentages of RuV-positive cells, as determined by flow cytometry analysis and further confirmed by real-time PCR. Such an enhancement effect on RuV infectivity was abolished using LY364947 or SB431542, inhibitors of the TGF-β/Smad signaling pathway. The findings suggest that the TGF-β1-induced EMT-like process enhances RuV binding and infection in A549 cells via the Smad pathway. Further studies are necessary to identify possible proteins that facilitate viral binding and entry into treated cells.
Collapse
|
7
|
Knight DA, Grainge CL, Stick SM, Kicic A, Schuliga M. Epithelial Mesenchymal Transition in Respiratory Disease: Fact or Fiction. Chest 2020; 157:1591-1596. [PMID: 31952949 DOI: 10.1016/j.chest.2019.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Australian Respiratory Epithelium Consortium, Perth, WA, Australia.
| | - Christopher L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Subiaco, WA, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Anthony Kicic
- Telethon Kids Institute, Subiaco, WA, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| |
Collapse
|
8
|
Nader CP, Cidem A, Verrills NM, Ammit AJ. Protein phosphatase 2A (PP2A): a key phosphatase in the progression of chronic obstructive pulmonary disease (COPD) to lung cancer. Respir Res 2019; 20:222. [PMID: 31623614 PMCID: PMC6798356 DOI: 10.1186/s12931-019-1192-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer (LC) has the highest relative risk of development as a comorbidity of chronic obstructive pulmonary disease (COPD). The molecular mechanisms that mediate chronic inflammation and lung function impairment in COPD have been identified in LC. This suggests the two diseases are more linked than once thought. Emerging data in relation to a key phosphatase, protein phosphatase 2A (PP2A), and its regulatory role in inflammatory and tumour suppression in both disease settings suggests that it may be critical in the progression of COPD to LC. In this review, we uncover the importance of the functional and active PP2A holoenzyme in the context of both diseases. We describe PP2A inactivation via direct and indirect means and explore the actions of two key PP2A endogenous inhibitors, cancerous inhibitor of PP2A (CIP2A) and inhibitor 2 of PP2A (SET), and the role they play in COPD and LC. We explain how dysregulation of PP2A in COPD creates a favourable inflammatory micro-environment and promotes the initiation and progression of tumour pathogenesis. Finally, we highlight PP2A as a druggable target in the treatment of COPD and LC and demonstrate the potential of PP2A re-activation as a strategy to halt COPD disease progression to LC. Although further studies are required to elucidate if PP2A activity in COPD is a causal link for LC progression, studies focused on the potential of PP2A reactivating agents to reduce the risk of LC formation in COPD patients will be pivotal in improving clinical outcomes for both COPD and LC patients in the future.
Collapse
Affiliation(s)
- Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Soltani A, Mahmood MQ, Reid DW, Walters EH. Cancer-protective effects of inhaled corticosteroids in COPD are likely related to modification of epithelial activation. Eur Respir J 2019; 54:54/3/1901088. [DOI: 10.1183/13993003.01088-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023]
|
10
|
Szucs B, Szucs C, Petrekanits M, Varga JT. Molecular Characteristics and Treatment of Endothelial Dysfunction in Patients with COPD: A Review Article. Int J Mol Sci 2019; 20:E4329. [PMID: 31487864 PMCID: PMC6770145 DOI: 10.3390/ijms20184329] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) show systemic consequences, such as chronic systemic inflammation leading to changes in the airway, airway penetrability, and endothelial function. Endothelial dysfunction is characterized by a list of alterations of endothelium towards reduced vasodilation, proinflammatory state, detachment and apoptosis of endothelial cells, and development of atherosclerosis. COPD-induced endothelial dysfunction is associated with elevated cardiovascular risk. The increment of physical activities such as pulmonary rehabilitation (PR) training have a significant effect on COPD, thus, PR can be an integrative part of COPD treatment. In this narrative review the focus is on the function of endothelial inflammatory mediators [cytokines, chemokines, and cellular proteases] and pulmonary endothelial cells and endothelial dysfunction in COPD as well as the effects of dysfunction of the endothelium may play in COPD-related pulmonary hypertension. The relationship between smoking and endothelial dysfunction is also discussed. The connection between different pulmonary rehabilitation programs, arterial stiffness and pulse wave velocity (PWV) is presented. Endothelial dysfunction is a significant prognostic factor of COPD, which can be characterized by PWV. We discuss future considerations, like training programs, as an important part of the treatment that has a favorable impact on the endothelial function.
Collapse
Affiliation(s)
- Botond Szucs
- PharmaFlight Research and Training Center, H-4030 Debrecen, Hungary
| | - Csilla Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Mate Petrekanits
- Institute of Exercise Physiology and Sport Medicine, University of Physical Education, H-1123 Budapest, Hungary
| | - Janos T Varga
- Department of Pulmonary Rehabilitation, National Koranyi Institute for Pulmonology, H-1121 Budapest, Hungary.
| |
Collapse
|
11
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
12
|
Cigarette Smoke Induced Lung Barrier Dysfunction, EMT, and Tissue Remodeling: A Possible Link between COPD and Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2025636. [PMID: 31341890 PMCID: PMC6613007 DOI: 10.1155/2019/2025636] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer, closely related to smoking, are major lung diseases affecting millions of individuals worldwide. The generated gas mixture of smoking is proved to contain about 4,500 components such as carbon monoxide, nicotine, oxidants, fine particulate matter, and aldehydes. These components were considered to be the principle factor driving the pathogenesis and progression of pulmonary disease. A large proportion of lung cancer patients showed a history of COPD, which demonstrated that there might be a close relationship between COPD and lung cancer. In the early stages of smoking, lung barrier provoked protective response and DNA repair are likely to suppress these changes to a certain extent. In the presence of long-term smoking exposure, these mechanisms seem to be malfunctioned and lead to disease progression. The infiltration of inflammatory cells to mucosa, submucosa, and glandular tissue caused by inhaled cigarette smoke is responsible for the destruction of matrix, blood supply shortage, and epithelial cell death. Conversely, cancer cells have the capacity to modulate the proliferation of epithelial cells and produce of new vascular networks. Comprehension understanding of mechanisms responsible for both pathologies is necessary for the prevention and treatment of COPD and lung cancer. In this review, we will summarize related articles and give a glance of possible mechanism between cigarette smoking induced COPD and lung cancer.
Collapse
|
13
|
Eapen MS, Myers S, Lu W, Tanghe C, Sharma P, Sohal SS. sE-cadherin and sVE-cadherin indicate active epithelial/endothelial to mesenchymal transition (EMT and EndoMT) in smokers and COPD: implications for new biomarkers and therapeutics. Biomarkers 2018; 23:709-711. [DOI: 10.1080/1354750x.2018.1479772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
| | - Chloé Tanghe
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
- Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Pawan Sharma
- Biomedical Sciences, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, Launceston, TAS, Australia
| |
Collapse
|
14
|
Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 2017. [DOI: 10.1002/dvdy.24541] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Chris Ward
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Mathew Suji Eapen
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| | - Stephen Myers
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
| | - Oskar Hallgren
- Department of Experimental Medical Sciences; Department of Respiratory Medicine and Allergology, Lund University; Sweden
| | - Herbert Levine
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Sukhwinder Singh Sohal
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
15
|
Sohal SS. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD). Respir Investig 2017; 55:104-113. [PMID: 28274525 DOI: 10.1016/j.resinv.2016.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 01/27/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is mainly caused by smoking and presents with shortness of breath that is progressive and irreversible. It is a worldwide health problem and the fourth most common cause of chronic disability and mortality (even in developed countries). It is a complex disease involving both the airway and lung parenchyma. Small-airway fibrosis is the main contributor to physiological airway dysfunction in COPD. One potential mechanism contributing to small-airway fibrosis is epithelial mesenchymal transition (EMT). When associated with angiogenesis (EMT-type-3), EMT may well also be linked to the development of airway epithelial cancer, which is closely associated with COPD and predominantly observed in large airways. Vascular remodeling has also been widely reported in smokers and patients with COPD but the mechanisms behind it are poorly understood. It is quite possible that the process of endothelial to mesenchymal transition (EndMT) is also active in COPD lungs, in addition to EMT. Understanding these pathological mechanisms will greatly enhance our knowledge of the immunopathology of smoking-related lung disease. Only by understanding these processes can new therapies be developed.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- School of Health Sciences, Faculty of Health, University of Tasmania, Locked Bag - 1322, Newnham Drive, Launceston, Tasmania 7248, Australia; NHMRC Centre of Research Excellence for Chronic Respiratory Disease, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
16
|
Soltani A, Walters EH, Reid DW, Shukla SD, Nowrin K, Ward C, Muller HK, Sohal SS. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:2359-2367. [PMID: 27703346 PMCID: PMC5038570 DOI: 10.2147/copd.s113176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This study assessed the effects of inhaled corticosteroid (ICS) on airway vascular remodeling in chronic obstructive pulmonary disease (COPD). METHODS Thirty-four subjects with mild-to-moderate COPD were randomly allocated 2:1 to ICS or placebo treatment in a double-blinded clinical trial over 6 months. Available tissue was compared before and after treatment for vessel density, and expression of VEGF, TGF-β1, and TGF-β1-related phosphorylated transcription factors p-SMAD 2/3. This clinical trial has been registered and allocated with the Australian New Zealand Clinical Trials Registry (ANZCTR) on 17/10/2012 with reference number ACTRN12612001111864. RESULTS There were no significant baseline differences between treatment groups. With ICS, vessels and angiogenic factors did not change in hypervascular reticular basement membrane, but in the hypovascular lamina propria (LP), vessels increased and this had a proportionate effect on lung air trapping. There was modest evidence for a reduction in LP vessels staining for VEGF with ICS treatment, but a marked and significant reduction in p-SMAD 2/3 expression. CONCLUSION Six-month high-dose ICS treatment had little effect on hypervascularity or angiogenic growth factors in the reticular basement membrane in COPD, but normalized hypovascularity in the LP, and this was physiologically relevant, though accompanied by a paradoxical reduction in growth factor expression.
Collapse
Affiliation(s)
- Amir Soltani
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Eugene Haydn Walters
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David W Reid
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Shakti Dhar Shukla
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Kaosia Nowrin
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - H Konrad Muller
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Sukhwinder Singh Sohal
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
17
|
Yang IA, Shaw JG, Goddard JR, Clarke MS, Reid DW. Use of inhaled corticosteroids in COPD: improving efficacy. Expert Rev Respir Med 2016; 10:339-50. [DOI: 10.1586/17476348.2016.1151789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Sohal SS. Endothelial to mesenchymal transition (EndMT): an active process in Chronic Obstructive Pulmonary Disease (COPD)? Respir Res 2016; 17:20. [PMID: 26898357 PMCID: PMC4762171 DOI: 10.1186/s12931-016-0337-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/17/2016] [Indexed: 11/10/2022] Open
Abstract
Small airway fibrosis is the main contributor to physiological airway dysfunction in COPD. One potential mechanism contributing to small airway fibrosis is epithelial mesenchymal transition (EMT). When associated with angiogenesis (so called EMT-Type-3) it may well also be the link with the development of airway epithelial cancer, which is closely associated with COPD and predominantly in large airways. In a recent study published in Respiratory Research, Reimann and colleagues, showed increased expression of S100A4 in vasculature of human COPD and murine lungs. It is quite possible that the process of endothelial to mesenchymal transition (EndMT) is active in COPD lungs which we wish to comment on.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- School of Health Sciences, University of Tasmania, Locked Bag - 1322, Newnham Drive, Launceston, TAS, 7248, Australia. .,Breathe Well Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, 7000, Australia.
| |
Collapse
|
19
|
Mahmood MQ, Sohal SS, Shukla SD, Ward C, Hardikar A, Noor WD, Muller HK, Knight DA, Walters EH. Epithelial mesenchymal transition in smokers: large versus small airways and relation to airflow obstruction. Int J Chron Obstruct Pulmon Dis 2015; 10:1515-24. [PMID: 26346976 PMCID: PMC4531032 DOI: 10.2147/copd.s81032] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Small airway fibrosis is the main contributor in airflow obstruction in chronic obstructive pulmonary disease. Epithelial mesenchymal transition (EMT) has been implicated in this process, and in large airways, is associated with angiogenesis, ie, Type-3, which is classically promalignant. Objective In this study we have investigated whether EMT biomarkers are expressed in small airways compared to large airways in subjects with chronic airflow limitation (CAL) and what type of EMT is present on the basis of vascularity. Methods We evaluated epithelial activation, reticular basement membrane fragmentation (core structural EMT marker) and EMT-related mesenchymal biomarkers in small and large airways from resected lung tissue from 18 lung cancer patients with CAL and 9 normal controls. Tissues were immunostained for epidermal growth factor receptor (EGFR; epithelial activation marker), vimentin (mesenchymal marker), and S100A4 (fibroblast epitope). Type-IV collagen was stained to demonstrate vessels. Results There was increased expression of EMT-related markers in CAL small airways compared to controls: EGFR (P<0.001), vimentin (P<0.001), S100A4 (P<0.001), and fragmentation (P<0.001), but this was less than that in large airways. Notably, there was no hypervascularity in small airway reticular basement membrane as in large airways. Epithelial activation and S100A4 expression were related to airflow obstruction. Conclusion EMT is active in small airways, but less so than in large airways in CAL, and may be relevant to the key pathologies of chronic obstructive pulmonary disease, small airway fibrosis, and airway cancers.
Collapse
Affiliation(s)
- Malik Quasir Mahmood
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Sukhwinder Singh Sohal
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia ; School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS, Australia
| | - Shakti Dhar Shukla
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Wan Danial Noor
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Hans Konrad Muller
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Eugene Haydn Walters
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
20
|
Sohal SS, Mahmood MQ, Walters EH. Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung cancer. Clin Transl Med 2014; 3:33. [PMID: 26932377 PMCID: PMC4607924 DOI: 10.1186/s40169-014-0033-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/12/2014] [Indexed: 01/04/2023] Open
Abstract
Unfortunately, the research effort directed into chronic obstructive pulmonary disease (COPD) has been disproportionately weak compared to its social importance, and indeed it is the least researched of all common chronic conditions. Tobacco smoking is the major etiological factor. Only 25% of smokers will develop "classic" COPD; in these vulnerable individuals the progression of airways disease to symptomatic COPD occurs over two or more decades. We know surprisingly little about the pathobiology of COPD airway disease, though small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and these features occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix (ECM) is epithelial mesenchymal transition (EMT), so called Type-II EMT. When associated with angiogenesis (Type-III EMT) it may well also be a link with the development of lung (airway) cancer which is closely associated with COPD. Active EMT in COPD may help to explain why lung cancer is so common in smokers and also the core pathophysiology of small airway fibrosis. Better understanding may lead to new markers for incipient neoplasia, and better preventive management of patients. There is serious need to understand key components of airway EMT in smokers and COPD, and to demarcate novel drug targets for the prevention of lung cancer and airway fibrosis, as well as better secondary management of COPD. Since over 90% of human cancer arises in epithelia and the involvement of EMT in all of these may be a central paradigm, insights gained in COPD may have important generalizable value.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS-1, 17 Liverpool Street Private Bag-23, Hobart, 7000, TAS, Australia.
| | - Malik Quasir Mahmood
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS-1, 17 Liverpool Street Private Bag-23, Hobart, 7000, TAS, Australia.
| | - Eugene Haydn Walters
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS-1, 17 Liverpool Street Private Bag-23, Hobart, 7000, TAS, Australia.
| |
Collapse
|
21
|
Lambers C, Qi Y, Eleni P, Costa L, Zhong J, Tamm M, Block LH, Roth M. Extracellular matrix composition is modified by β₂-agonists through cAMP in COPD. Biochem Pharmacol 2014; 91:400-8. [PMID: 25107701 DOI: 10.1016/j.bcp.2014.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Long acting β₂-agonists (LABA) have been reported to modify the extracellular matrix (ECM) composition in the airway wall. Based on our earlier studies we here investigated the mechanism underlying the control of ECM modification by LABA in primary human airway smooth muscle cells. Cells were treated with formoterol or salmeterol (30 min) before TGF-β₁ stimulation (2-3 days) Using RT-PCT, immuno-blotting and ELISA the de novo synthesis and deposition of collagen type-I, -III, -IV and fibronectin were determined. Matrix metalloproteinases (MMP)-2 and -9 were analyzed by zymography. Both LABA activated cAMP and its corresponding transcription factor CREB within 60 min and thus partly reduced TGF-β₁-induced gene transcription of collagen type-I, -III, fibronectin and connective tissue growth factor (CTGF). The inhibitory effect of both LABA on collagen type-I and -III deposition involved a cAMP dependent mechanism, while the inhibitory effect of the two drugs on TGF-β1-induced fibronectin deposition and on CTGF secretion was independent of cAMP. Interestingly, none of the two LABA reduced CTGF-induced synthesis of collagen type-I or type-III deposition. In addition, none of the two LABA modified collagen type-IV deposition or the expression and activity of MMP-2 or MMP-9. Our results show that LABA can prevent de novo deposition of specific ECM components through cAMP dependent and independent signaling. However, they do not reduce all ECM components by the same mechanism and they do not reduce existing collagen deposits. This might explain some of the controversial reports on the anti-remodeling effect of LABA in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Christopher Lambers
- Division of Respiratory Medicine, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Ying Qi
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| | - Papakonstantinou Eleni
- Pharmacology, School of Medicine, University of Thessaloniki, GR-54621 Thessaloniki, Greece
| | - Luigi Costa
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| | - Jun Zhong
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| | - Lutz-Henning Block
- Division of Respiratory Medicine, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Roth
- Pulmonary Cell Research, Dept Biomedicine and Pneumology, Department of Internal Medicine, University Hospital and University of Basel CH-4031 Basel, Switzerland
| |
Collapse
|
22
|
Nowrin K, Sohal SS, Peterson G, Patel R, Walters EH. Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev Respir Med 2014; 8:547-59. [PMID: 25113142 DOI: 10.1586/17476348.2014.948853] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex condition, frequently with a mix of airway and lung parenchymal damage. However, the earliest changes are in the small airways, where most of the airflow limitation occurs. The pathology of small airway damage seems to be wall fibrosis and obliteration, but the whole airway is involved in a 'field effect'. Our novel observations on active epithelial-mesenchymal transition (EMT) in the airways of smokers, particularly in those with COPD, are changing the understanding of this airway pathology and the aetiology of COPD. EMT involves a cascade of regulatory changes that destabilise the epithelium with a motile and mesenchymal epithelial cell phenotype emerging. One important manifestation of EMT activity involves up-regulation of specific key transcription factors (TFs), such as Smads, Twist, and β-catenin. Such TFs can be used as EMT biomarkers, in recognisable patterns reflecting the potential major drivers of the process; for example, TGFβ, Wnt, and integrin-linked kinase systems. Thus, understanding the relative changes in TF activity during EMT may provide rich information on the mechanisms driving this whole process, and how they may change over time and with therapy. We have sought to review the current literature on EMT and the relative expression of specific TF activity, to define the networks likely to be involved in a similar process in the airways of patients with smoking-related COPD.
Collapse
Affiliation(s)
- Kaosia Nowrin
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Australia
| | | | | | | | | |
Collapse
|
23
|
Xiong Y, Wang J, Yu H, Zhang X, Miao C, Ma S. The effects of nodakenin on airway inflammation, hyper-responsiveness and remodeling in a murine model of allergic asthma. Immunopharmacol Immunotoxicol 2014; 36:341-8. [PMID: 25090633 DOI: 10.3109/08923973.2014.947035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Nodakenin is a major coumarin glucoside in the root of Peucedanum decursivum Maxim, a commonly used traditional Chinese medicine for the treatment of asthma and chronic bronchitis for thousands of years. OBJECTIVE In this work, the anti-asthma potential of nodakenin was studied by investigation of its effect to suppress airway inflammation, hyper-responsiveness and remodeling in a murine model of chronic asthma. MATERIALS AND METHODS BALB/c mice sensitized to ovalbumin (OVA) were challenged with aerosolized OVA for 8 weeks, orally administered with nodakenin at doses of 5, 10 and 20 mg/kg before each OVA challenge. RESULTS Compared with the model group, nodakenin treatment markedly inhibited airway inflammation, hyper-responsiveness and remodeling, showing improvement in subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia, and decreased levels of interleukin (IL)-4, IL-5, IL-13 and matrix metalloproteinase-2/-9 in bronchoalveolar lavage fluid, and the level of OVA-specific IgE in serum. In addition, the NF-κB DNA-binding activity in lung tissues was also reduced by nodakenin treatment. CONCLUSIONS These data indicated that nodakenin might mitigate the development of chronic experimental allergic asthma.
Collapse
Affiliation(s)
- Youyi Xiong
- College of Food and Drug, Anhui Science and Technology University , Fengyang, Anhui , People's Republic of China and
| | | | | | | | | | | |
Collapse
|
24
|
McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 2014; 157:1380-1392. [PMID: 24906154 PMCID: PMC4144415 DOI: 10.1016/j.cell.2014.05.009] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/14/2014] [Accepted: 03/25/2014] [Indexed: 11/30/2022]
Abstract
Bromine is ubiquitously present in animals as ionic bromide (Br(-)) yet has no known essential function. Herein, we demonstrate that Br(-) is a required cofactor for peroxidasin-catalyzed formation of sulfilimine crosslinks, a posttranslational modification essential for tissue development and architecture found within the collagen IV scaffold of basement membranes (BMs). Bromide, converted to hypobromous acid, forms a bromosulfonium-ion intermediate that energetically selects for sulfilimine formation. Dietary Br deficiency is lethal in Drosophila, whereas Br replenishment restores viability, demonstrating its physiologic requirement. Importantly, Br-deficient flies phenocopy the developmental and BM defects observed in peroxidasin mutants and indicate a functional connection between Br(-), collagen IV, and peroxidasin. We establish that Br(-) is required for sulfilimine formation within collagen IV, an event critical for BM assembly and tissue development. Thus, bromine is an essential trace element for all animals, and its deficiency may be relevant to BM alterations observed in nutritional and smoking-related disease. PAPERFLICK:
Collapse
Affiliation(s)
- A Scott McCall
- Department of Pharmacology, Vanderbilt University School of Medicine, 451 Preston Research Building, Nashville, TN 37232, USA
| | - Christopher F Cummings
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, D-3100 Medical Center North, Nashville, TN 37232, USA
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, D-3100 Medical Center North, Nashville, TN 37232, USA
| | - Roberto Vanacore
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, D-3100 Medical Center North, Nashville, TN 37232, USA; Center for Matrix Biology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-3218 Medical Research Building III, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, 691 Preston Research Building, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Billy G Hudson
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, D-3100 Medical Center North, Nashville, TN 37232, USA; Center for Matrix Biology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, C-3322 Medical Center North, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, 896 Preston Research Building, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Sohal SS, Soltani A, Reid D, Ward C, Wills KE, Muller HK, Walters EH. A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial-mesenchymal transition (EMT) in large airway samples in COPD: an exploratory proof of concept study. Int J Chron Obstruct Pulmon Dis 2014; 9:533-42. [PMID: 24920891 PMCID: PMC4043431 DOI: 10.2147/copd.s63911] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background We recently reported that epithelial–mesenchymal transition (EMT) is active in the airways in chronic obstructive pulmonary disease (COPD), suggesting presence of an active profibrotic and promalignant stroma. With no data available on potential treatment effects, we undertook a blinded analysis of inhaled corticosteroids (ICS) effects versus placebo on EMT markers in previously obtained endobronchial biopsies in COPD patients, as a “proof of concept” study. Methods Assessment of the effects of inhaled fluticasone propionate (FP; 500 μg twice daily for 6 months) versus placebo in 34 COPD patients (23 on fluticasone propionate and eleven on placebo). The end points were epidermal growth factor receptor (EGFR; marker of epithelial activation) and the biomarkers of EMT: reticular basement membrane (Rbm) fragmentation (“hallmark” structural marker), matrix metalloproteinase-9 (MMP-9) cell expression, and S100A4 expression in basal epithelial and Rbm cells (mesenchymal transition markers). Results Epithelial activation, “clefts/fragmentation” in the Rbm, and changes in the other biomarkers all regressed on ICS, at or close to conventional levels of statistical significance. From these data, we have been able to nominate primary and secondary end points and develop power calculations that would be applicable to a definitive prospective study. Conclusion Although only a pilot “proof of concept” study, this trial provided strong suggestive support for an anti-EMT effect of ICS in COPD airways. A larger and fully powered prospective study is now indicated as this issue is likely to be extremely important. Such studies may clarify the links between ICS use and better clinical outcomes and protection against lung cancer in COPD.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Amir Soltani
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - David Reid
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia ; Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Chris Ward
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia ; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Karen E Wills
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia ; Department of Biostatistics, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - H Konrad Muller
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Eugene Haydn Walters
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Sohal SS, Ward C, Walters EH. Importance of epithelial mesenchymal transition (EMT) in COPD and asthma. Thorax 2014; 69:768. [PMID: 24842787 DOI: 10.1136/thoraxjnl-2014-205582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sukhwinder Singh Sohal
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Eugene Haydn Walters
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
27
|
Pathological changes in the COPD lung mesenchyme--novel lessons learned from in vitro and in vivo studies. Pulm Pharmacol Ther 2014; 29:121-8. [PMID: 24747433 DOI: 10.1016/j.pupt.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the fourth leading cause of death worldwide and, in contrast to the trend for cardiovascular diseases, mortality rates still continue to climb. This increase is in part due to an aging population, being expanded by the "Baby boomer" generation who grew up when smoking rates were at their peak and by people in developing countries living longer. Sadly, there has been a disheartening lack of new therapeutic approaches to counteract the progressive decline in lung function associated with the disease that leads to disability and death. COPD is characterized by irreversible chronic airflow limitation that is caused by emphysematous destruction of lung elastic tissue and/or obstruction in the small airways due to occlusion of their lumen by inflammatory mucus exudates, narrowing and obliteration. These lesions are mainly produced by the response of the tissue to the repetitive inhalational injury inflicted by noxious gases, including cigarette smoke, which involves interaction between infiltrating inflammatory immune cells, resident cells (e.g. epithelial cells and fibroblasts) and the extra cellular matrix. This interaction leads to tissue destruction and airway remodeling with changes in elastin and collagen, such that the epithelial-mesenchymal trophic unit is dysregulated in both the disease pathologies. This review focuses on: 1--novel inflammatory and remodeling factors that are altered in COPD; 2--in vitro and in vivo models to understand the mechanism whereby the extra cellular matrix environment in altered in COPD; and 3--COPD in the context of wound-repair tissue responses, with a focus on the regulation of mesenchymal cell fate and phenotype.
Collapse
|
28
|
Sohal SS, Ward C, Danial W, Wood-Baker R, Walters EH. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 7:275-88. [PMID: 23734649 DOI: 10.1586/ers.13.26] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The authors have reviewed the current literature on airway inflammation and remodeling in smoking-related chronic obstructive pulmonary disease (COPD). Detailed data on airway remodeling in COPD are especially sparse and how these changes lead to decline in lung function is not well understood. Small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix is epithelial-mesenchymal transition. When associated with angiogenesis (so-called epithelial-mesenchymal transition type 3) it may well also be the link with the development of cancer, which is closely associated with COPD, predominantly in large airways. The authors have focused on our recent publications in these areas. Further investigations teasing out these mechanisms will help improve our understanding of key airway disease processes in COPD, which may have major therapeutic implications.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- National Health and Medical Research Council Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania 7000, Australia
| | | | | | | | | |
Collapse
|
29
|
Sohal SS, Walters EH. Role of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD). Respir Res 2013; 14:120. [PMID: 24195704 PMCID: PMC4176099 DOI: 10.1186/1465-9921-14-120] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/05/2013] [Indexed: 11/12/2022] Open
Abstract
Small airway fibrosis is the main contributor to physiological airway dysfunction in COPD. One potential mechanism contributing to small airway fibrosis is epithelial mesenchymal transition (EMT). When associated with angiogenesis (so called EMT-Type-3) it may well also be the link with the development of cancer, which is closely associated with COPD and predominantly in large airways. In a recent study published in Respiratory Research, Qin Wang and colleagues investigated the role of urokinase plasminogen activator receptor (uPAR) in EMT in small airway epithelium of COPD patients. However, there are some issues with the paper which we wish to comment on.
Collapse
Affiliation(s)
| | - Eugene Haydn Walters
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart 7000, Australia.
| |
Collapse
|
30
|
|