1
|
Role of Phosphodiesterase 7 (PDE7) in T Cell Activity. Effects of Selective PDE7 Inhibitors and Dual PDE4/7 Inhibitors on T Cell Functions. Int J Mol Sci 2020; 21:ijms21176118. [PMID: 32854348 PMCID: PMC7504236 DOI: 10.3390/ijms21176118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified: PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP—a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.
Collapse
|
2
|
Arumugham VB, Ulivieri C, Onnis A, Finetti F, Tonello F, Ladant D, Baldari CT. Compartmentalized Cyclic AMP Production by the Bordetella pertussis and Bacillus anthracis Adenylate Cyclase Toxins Differentially Affects the Immune Synapse in T Lymphocytes. Front Immunol 2018; 9:919. [PMID: 29765373 PMCID: PMC5938339 DOI: 10.3389/fimmu.2018.00919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
A central feature of the immune synapse (IS) is the tight compartmentalization of membrane receptors and signaling mediators that is functional for its ability to coordinate T cell activation. Second messengers centrally implicated in this process, such as Ca2+ and diacyl glycerol, also undergo compartmentalization at the IS. Current evidence suggests a more complex scenario for cyclic AMP (cAMP), which acts both as positive and as negative regulator of T-cell antigen receptor (TCR) signaling and which, as such, must be subjected to a tight spatiotemporal control to allow for signaling at the IS. Here, we have used two bacterial adenylate cyclase toxins that produce cAMP at different subcellular localizations as the result of their distinct routes of cell invasion, namely Bordetella pertussis CyaA and Bacillus anthracis edema toxin (ET), to address the ability of the T cell to confine cAMP to the site of production and to address the impact of compartmentalized cAMP production on IS assembly and function. We show that CyaA, which produces cAMP close to the synaptic membrane, affects IS stability by modulating not only the distribution of LFA-1 and its partners talin and L-plastin, as previously partly reported but also by promoting the sustained synaptic accumulation of the A-kinase adaptor protein ezrin and protein kinase A while suppressing the β-arrestin-mediated recruitment of phosphodiesterase 4B. These effects are dependent on the catalytic activity of the toxin and can be reproduced by treatment with a non-hydrolyzable cAMP analog. Remarkably, none of these effects are elicited by ET, which produces cAMP at a perinuclear localization, despite its ability to suppress TCR signaling and T cell activation through its cAMP-elevating activity. These results show that the IS responds solely to local elevations of cAMP and provide evidence that potent compartmentalization mechanisms are operational in T cells to contain cAMP close to the site of production, even when produced at supraphysiological levels.
Collapse
Affiliation(s)
| | | | - Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Fiorella Tonello
- Neuroscience Institute, Italian National Research Council, Padua, Italy
| | - Daniel Ladant
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, France
| | | |
Collapse
|
3
|
Balut CM, Hamilton KL, Devor DC. Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels: a novel target for medicinal chemistry efforts? ChemMedChem 2012; 7:1741-55. [PMID: 22887933 DOI: 10.1002/cmdc.201200226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Ca(2+)-activated K(+) (KCa) channels play a pivotal role in the physiology of a wide variety of tissues and disease states, including vascular endothelia, secretory epithelia, certain cancers, red blood cells (RBC), neurons, and immune cells. Such widespread involvement has generated an intense interest in elucidating the function and regulation of these channels, with the goal of developing pharmacological strategies aimed at selective modulation of KCa channels in various disease states. Herein we give an overview of the molecular and functional properties of these channels and their therapeutic importance. We discuss the achievements made in designing pharmacological tools that control the function of KCa channels by modulating their gating properties. Moreover, this review discusses the recent advances in our understanding of KCa channel assembly and anterograde trafficking toward the plasma membrane, the micro-domains in which these channels are expressed within the cell, and finally the retrograde trafficking routes these channels take following endocytosis. As the regulation of intracellular trafficking by agonists as well as the protein-protein interactions that modify these events continue to be explored, we anticipate this will open new therapeutic avenues for the targeting of these channels based on the pharmacological modulation of KCa channel density at the plasma membrane.
Collapse
Affiliation(s)
- Corina M Balut
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
4
|
Mosenden R, Moltu K, Ruppelt A, Berge T, Taskén K. Effects of type I protein kinase A modulation on the T cell distal pole complex. Scand J Immunol 2011; 74:568-73. [PMID: 21854406 DOI: 10.1111/j.1365-3083.2011.02611.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distal pole complex (DPC) assembles signalling proteins at the T cell pole opposite the immunological synapse (IS) and is thought to facilitate T cell activation by sequestering negative regulatory molecules away from the T cell receptor-proximal signalling machinery. Here, we report the translocation of type I protein kinase A (PKA) to the DPC in a fraction of T cells following activation and the localization of type I PKA with known components of the DPC. We propose that sequestration of type I PKA and concomitant loss of cAMP-mediated negative regulation at the IS may be necessary to allow full T cell activation. Moreover, composition of the DPC appears to be modulated by type I PKA activity, as the antagonist Rp-8-Br-cAMPS inhibited translocation of type I PKA and other DPC proteins.
Collapse
Affiliation(s)
- R Mosenden
- The Biotechnology Centre, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
5
|
Nicolaou SA, Szigligeti P, Neumeier L, Lee SM, Duncan HJ, Kant SK, Mongey AB, Filipovich AH, Conforti L. Altered dynamics of Kv1.3 channel compartmentalization in the immunological synapse in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2007; 179:346-56. [PMID: 17579055 PMCID: PMC2453311 DOI: 10.4049/jimmunol.179.1.346] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aberrant T cell responses during T cell activation and immunological synapse (IS) formation have been described in systemic lupus erythematosus (SLE). Kv1.3 potassium channels are expressed in T cells where they compartmentalize at the IS and play a key role in T cell activation by modulating Ca(2+) influx. Although Kv1.3 channels have such an important role in T cell function, their potential involvement in the etiology and progression of SLE remains unknown. This study compares the K channel phenotype and the dynamics of Kv1.3 compartmentalization in the IS of normal and SLE human T cells. IS formation was induced by 1-30 min exposure to either anti-CD3/CD28 Ab-coated beads or EBV-infected B cells. We found that although the level of Kv1.3 channel expression and their activity in SLE T cells is similar to normal resting T cells, the kinetics of Kv1.3 compartmentalization in the IS are markedly different. In healthy resting T cells, Kv1.3 channels are progressively recruited and maintained in the IS for at least 30 min from synapse formation. In contrast, SLE, but not rheumatoid arthritis, T cells show faster kinetics with maximum Kv1.3 recruitment at 1 min and movement out of the IS by 15 min after activation. These kinetics resemble preactivated healthy T cells, but the K channel phenotype of SLE T cells is identical to resting T cells, where Kv1.3 constitutes the dominant K conductance. The defective temporal and spatial Kv1.3 distribution that we observed may contribute to the abnormal functions of SLE T cells.
Collapse
Affiliation(s)
- Stella A. Nicolaou
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Peter Szigligeti
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Susan Molleran Lee
- Division of Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Heather J. Duncan
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Shashi K. Kant
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Anne Barbara Mongey
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Alexandra H. Filipovich
- Division of Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Laura Conforti
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
6
|
Nicolaou SA, Neumeier L, Peng Y, Devor DC, Conforti L. The Ca(2+)-activated K(+) channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes. Am J Physiol Cell Physiol 2006; 292:C1431-9. [PMID: 17151145 PMCID: PMC2553516 DOI: 10.1152/ajpcell.00376.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cell receptor engagement results in the reorganization of intracellular and membrane proteins at the T cell-antigen presenting cell interface forming the immunological synapse (IS), an event required for Ca(2+) influx. KCa3.1 channels modulate Ca(2+) signaling in activated T cells by regulating the membrane potential. Nothing is known regarding KCa3.1 membrane distribution during T cell activation. Herein, we determined whether KCa3.1 translocates to the IS in human T cells using YFP-tagged KCa3.1 channels. These channels showed electrophysiological and pharmacological properties identical to wild-type channels. IS formation was induced by either anti-CD3/CD28 antibody-coated beads for fixed microscopy experiments or Epstein-Barr virus-infected B cells for fixed and live cell microscopy. In fixed microscopy experiments, T cells were also immunolabeled for F-actin or CD3epsilon, which served as IS formation markers. The distribution of KCa3.1 was determined with confocal and fluorescence microscopy. We found that, upon T cell activation, KCa3.1 channels localize with F-actin and CD3epsilon to the IS but remain evenly distributed on the cell membrane when no stimulus is provided. Detailed imaging experiments indicated that KCa3.1 channels are recruited in the IS shortly after antigen presentation and are maintained there for at least 15-30 min. Interestingly, pretreatment of activated T cells with the specific KCa3.1 blocker TRAM-34 blocked Ca(2+) influx, but channel redistribution to the IS was not prevented. These results indicate that KCa3.1 channels are a part of the signaling complex that forms at the IS upon antigen presentation.
Collapse
Affiliation(s)
- Stella A. Nicolaou
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - YouQing Peng
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniel C. Devor
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Laura Conforti
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|