1
|
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys 2019; 52:e10. [PMID: 31709962 DOI: 10.1017/s0033583519000088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
Collapse
|
2
|
Chua GL, Tang XY, Patra AT, Tan SM, Bhattacharjya S. Structure and binding interface of the cytosolic tails of αXβ2 integrin. PLoS One 2012; 7:e41924. [PMID: 22844534 PMCID: PMC3406025 DOI: 10.1371/journal.pone.0041924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Integrins are signal transducer proteins involved in a number of vital physiological processes including cell adhesion, proliferation and migration. Integrin molecules are hetero-dimers composed of two distinct subunits, α and β. In humans, 18 α and 8 β subunits are combined into 24 different integrin molecules. Each of the subunit comprises a large extracellular domain, a single pass transmembrane segment and a cytosolic tail (CT). The CTs of integrins are vital for bidirectional signal transduction and in maintaining the resting state of the receptors. A large number of intracellular proteins have been found to interact with the CTs of integrins linking integrins to the cytoskeleton. METHODOLOGY/PRINCIPAL FINDINGS In this work, we have investigated structure and interactions of CTs of the leukocyte specific integrin αXβ2. We determined the atomic resolution structure of a myristoylated CT of αX in perdeuterated dodecylphosphocholine (DPC) by NMR spectroscopy. Our results reveal that the 35-residue long CT of αX adopts an α-helical conformation for residues F4-N17 at the N-terminal region. The remaining residues located at the C-terminal segment of αX delineate a long loop of irregular conformations. A segment of the loop maintains packing interactions with the helical structure by an extended non-polar surface of the αX CT. Interactions between αX and β2 CTs are demonstrated by (15)N-(1)H HSQC NMR experiments. We find that residues constituting the polar face of the helical conformation of αX are involved in interactions with the N-terminal residues of β2 CT. A docked structure of the CT complex indicates that a network of polar and/or salt-bridge interactions may sustain the heteromeric interactions. CONCLUSIONS/SIGNIFICANCE The current study provides important insights into the conservation of interactions and structures among different CTs of integrins.
Collapse
Affiliation(s)
- Geok-Lin Chua
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiao-Yan Tang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alok Tanala Patra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 2012; 32:241-69. [PMID: 22458844 DOI: 10.1042/bsr20110101] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucocytes are highly motile cells. Their ability to migrate into tissues and organs is dependent on cell adhesion molecules. The integrins are a family of heterodimeric transmembrane cell adhesion molecules that are also signalling receptors. They are involved in many biological processes, including the development of metazoans, immunity, haemostasis, wound healing and cell survival, proliferation and differentiation. The leucocyte-restricted β2 integrins comprise four members, namely αLβ2, αMβ2, αXβ2 and αDβ2, which are required for a functional immune system. In this paper, the structure, functional regulation and signalling properties of these integrins are reviewed.
Collapse
|
4
|
Chua GL, Tang XY, Amalraj M, Tan SM, Bhattacharjya S. Structures and interaction analyses of integrin αMβ2 cytoplasmic tails. J Biol Chem 2011; 286:43842-43854. [PMID: 22052909 DOI: 10.1074/jbc.m111.280164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins are heterodimeric (α and β subunits) signal transducer proteins involved in cell adhesions and migrations. The cytosolic tails of integrins are essential for transmitting bidirectional signaling and also implicated in maintaining the resting states of the receptors. In addition, cytosolic tails of integrins often undergo post-translation modifications like phosphorylation. However, the consequences of phosphorylation on the structures and interactions are not clear. The leukocyte-specific integrin αMβ2 is essential for myeloid cell adhesion, phagocytosis, and degranulation. In this work, we determined solution structures of the myristoylated cytosolic tail of αM and a Ser phosphorylated variant in dodecylphosphocholine micelles by NMR spectroscopy. Furthermore, the interactions between non-phosphorylated and phosphorylated αM tails with β2 tail were investigated by NMR and fluorescence resonance energy transfer (FRET). The three-dimensional structures of the 24-residue cytosolic tail of αM or phosphorylated αM are characterized by an N-terminal amphipathic helix and a loop at the C terminus. The residues at the loop are involved in packing interactions with the hydrophobic face of the helix. 15N-1H heteronuclear single quantum coherence experiments identified residues of αM and β2 tails that may be involved in the formation of a tail-tail heterocomplex. We further examined interactions between myristoylated β2 tail in dodecylphosphocholine micelles with dansylated αM tail peptides by FRET. These studies revealed enhanced interactions between αM or phosphorylated αM tails with β2 tail with Kd values ∼5.2±0.6 and ∼4.4±0.7 μm, respectively. Docked structures of tail-tail complexes delineated that the αM/β2 interface at the cytosolic region could be sustained by a network of polar interactions, ionic interactions, and/or hydrogen bonds.
Collapse
Affiliation(s)
- Geok-Lin Chua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiao-Yan Tang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Monalisa Amalraj
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
5
|
The integrin LFA-1 signals through ZAP-70 to regulate expression of high-affinity LFA-1 on T lymphocytes. Blood 2011; 117:3331-42. [PMID: 21200022 DOI: 10.1182/blood-2010-06-289140] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The integrin lymphocyte function-associated antigen 1 (LFA-1) controls many functions of T lymphocytes and is particularly essential during lymphocyte migration from blood into tissues. LFA-1 is considered to initiate "outside-in" signaling when bound to ligand intercellular adhesion molecule 1 (ICAM-1), but little is known about the proteins involved or where in the cell such LFA-1-mediated signaling might be operating. Here we show that LFA-1 is constitutively associated with the protein tyrosine kinases Lck and zeta chain-associated protein of 70 kDa (ZAP-70). When LFA-1 binds ICAM-1, both kinases become phosphorylated and the consequence of kinase activation is the conversion of intermediate- to high-affinity LFA-1 and an increase in close contact with ICAM-1. In the polarized T lymphocyte, phospho-ZAP-70 is concentrated within a region of high-affinity LFA-1 that includes talin and encompasses the lamella/lamellipodial interface as well as further back in the cell. Deficiency of ZAP-70 through inhibition or knockdown in T lymphocytes decreases the speed of migration on ICAM-1, as well as reducing firm adhesion under shear-flow conditions. Through its control of high-affinity LFA-1, the LFA-1/Lck/ZAP-70 complex is in position to initiate the rapid adhesion strengthening and migration necessary for T-lymphocyte responses when stimulated vasculature is encountered at sites of infection or injury.
Collapse
|
6
|
Cairo CW, Das R, Albohy A, Baca QJ, Pradhan D, Morrow JS, Coombs D, Golan DE. Dynamic regulation of CD45 lateral mobility by the spectrin-ankyrin cytoskeleton of T cells. J Biol Chem 2010; 285:11392-401. [PMID: 20164196 DOI: 10.1074/jbc.m109.075648] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The leukocyte common antigen, CD45, is a critical immune regulator whose activity is modulated by cytoskeletal interactions. Components of the spectrin-ankyrin cytoskeleton have been implicated in the trafficking and signaling of CD45. We have examined the lateral mobility of CD45 in resting and activated T lymphocytes using single-particle tracking and found that the receptor has decreased mobility caused by increased cytoskeletal contacts in activated cells. Experiments with cells that have disrupted betaI spectrin interactions show decreased cytoskeletal contacts in resting cells and attenuation of receptor immobilization in activated cells. Applying two types of population analyses to single-particle tracking trajectories, we find good agreement between the diffusion coefficients obtained using either a mean squared displacement analysis or a hidden Markov model analysis. Hidden Markov model analysis also reveals the rate of association and dissociation of CD45-cytoskeleton contacts, demonstrating the importance of this analysis for measuring cytoskeleton binding events in live cells. Our findings are consistent with a model in which multiple cytoskeletal contacts, including those with spectrin and ankyrin, participate in the regulation of CD45 lateral mobility. These interactions are a major factor in CD45 immobilization in activated cells. Furthermore, cellular activation leads to CD45 immobilization by reduction of the CD45-cytoskeleton dissociation rate. Short peptides that mimic spectrin repeat domains alter the association rate of CD45 to the cytoskeleton and cause an apparent decrease in dissociation rates. We propose a model for CD45-cytoskeleton interactions and conclude that the spectrin-ankyrin-actin network is an essential determinant of immunoreceptor mobility.
Collapse
Affiliation(s)
- Christopher W Cairo
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu L, Bernard-Trifilo JA, Lim Y, Lim ST, Mitra SK, Uryu S, Chen M, Pallen CJ, Cheung NK, Mikolon D, Mielgo A, Stupack DG, Schlaepfer DD. Distinct FAK-Src activation events promote alpha5beta1 and alpha4beta1 integrin-stimulated neuroblastoma cell motility. Oncogene 2007; 27:1439-48. [PMID: 17828307 PMCID: PMC2593630 DOI: 10.1038/sj.onc.1210770] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signals from fibronectin-binding integrins promote neural crest cell motility during development in part through protein-tyrosine kinase (PTK) activation. Neuroblastoma (NB) is a neural crest malignancy with high metastatic potential. We find that alpha4 and alpha5 integrins are present in late-stage NB tumors and cell lines derived thereof. To determine the signaling connections promoting either alpha4beta1- or alpha5beta1-initiated NB cell motility, pharmacological, dominant negative and short-hairpin RNA (shRNA) inhibitory approaches were undertaken. shRNA knockdown revealed that alpha5beta1-stimulated NB motility is dependent upon focal adhesion kinase (FAK) PTK, Src PTK and p130Cas adapter protein expression. Cell reconstitution showed that FAK catalytic activity is required for alpha5beta1-stimulated Src activation in part through direct FAK phosphorylation of Src at Tyr-418. Alternatively, alpha4beta1-stimulated NB cell motility is dependent upon Src and p130Cas but FAK is not essential. Catalytically inactive receptor protein-tyrosine phosphatase-alpha overexpression inhibited alpha4beta1-stimulated NB motility and Src activation consistent with alpha4-regulated Src activity occurring through Src Tyr-529 dephosphorylation. In alpha4 shRNA-expressing NB cells, alpha4beta1-stimulated Src activation and NB cell motility were rescued by wild type but not cytoplasmic domain-truncated alpha4 re-expression. These studies, supported by results using reconstituted fibroblasts, reveal that alpha4beta1-mediated Src activation is mechanistically distinct from FAK-mediated Src activation during alpha5beta1-mediated NB migration and support the evaluation of inhibitors to alpha4, Src and FAK in the control of NB tumor progression.
Collapse
Affiliation(s)
- L Wu
- Department of Immunology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dawes R, Petrova S, Liu Z, Wraith D, Beverley PCL, Tchilian EZ. Combinations of CD45 isoforms are crucial for immune function and disease. THE JOURNAL OF IMMUNOLOGY 2006; 176:3417-25. [PMID: 16517710 PMCID: PMC2619577 DOI: 10.4049/jimmunol.176.6.3417] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of the CD45 Ag in hemopoietic cells is essential for normal development and function of lymphocytes, and both mice and humans lacking expression exhibit SCID. Human genetic variants of CD45, the exon 4 C77G and exon 6 A138G alleles, which alter the pattern of CD45 isoform expression, are associated with autoimmune and infectious diseases. We constructed transgenic mice expressing either an altered level or combination of CD45 isoforms. We show that the total level of CD45 expressed is crucial for normal TCR signaling, lymphocyte proliferation, and cytokine production. Most importantly, transgenic lines with a normal level, but altered combinations of CD45 isoforms, CD45(RABC/+) and CD45(RO/+) mice, which mimic variant CD45 expression in C77G and A138G humans, show more rapid onset and increased severity of experimental autoimmune encephalomyelitis. CD45(RO/+) cells produce more TNF-alpha and IFN-gamma. Thus, for the first time, we have shown experimentally that it is the combination of CD45 isoforms that affects immune function and disease.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Cytokines/biosynthesis
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Leukocyte Common Antigens/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Transgenic
- Myelin Proteins
- Myelin-Associated Glycoprotein/pharmacology
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/pharmacology
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Ritu Dawes
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - Svetla Petrova
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - Zhe Liu
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - David Wraith
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Elma Z. Tchilian
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
- Address correspondence and reprint requests to Dr. Elma Z. Tchilian, The Edward Jenner Institute for Vaccine Research, Compton, Berkshire RG20 7NN, U.K. E-mail address:
| |
Collapse
|
9
|
Hsia DA, Lim ST, Bernard-Trifilo JA, Mitra SK, Tanaka S, den Hertog J, Streblow DN, Ilic D, Ginsberg MH, Schlaepfer DD. Integrin alpha4beta1 promotes focal adhesion kinase-independent cell motility via alpha4 cytoplasmic domain-specific activation of c-Src. Mol Cell Biol 2005; 25:9700-12. [PMID: 16227616 PMCID: PMC1265817 DOI: 10.1128/mcb.25.21.9700-9712.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fibronectin binding integrins alpha5beta1 and alpha4beta1 generate signals pivotal for cell migration through distinct yet undefined mechanisms. For alpha5beta1, beta1-mediated activation of focal adhesion kinase (FAK) promotes c-Src recruitment to FAK and the formation of a FAK-Src signaling complex. Herein, we show that FAK expression is essential for alpha5beta1-stimulated cell motility and that exogenous expression of human alpha4 in FAK-null fibroblasts forms a functional alpha4beta1 receptor that promotes robust cell motility equal to the alpha5beta1 stimulation of wild-type and FAK-reconstituted fibroblasts. alpha4beta1-stimulated FAK-null cell spreading and motility were dependent on the integrity of the alpha4 cytoplasmic domain, independent of direct paxillin binding to alpha4, and were not affected by PRNK expression, a dominant-negative inhibitor of Pyk2. alpha4 cytoplasmic domain-initiated signaling led to a approximately 4-fold activation of c-Src which did not require paxillin binding to alpha4. Notably, alpha4-stimulated cell motility was inhibited by catalytically inactive receptor protein-tyrosine phosphatase alpha overexpression and blocked by the p50Csk phosphorylation of c-Src at Tyr-529. alpha4beta1-stimulated cell motility of triple-null Src(-/-), c-Yes(-/-), and Fyn(-/-) fibroblasts was dependent on c-Src reexpression that resulted in p130Cas tyrosine phosphorylation and Rac GTPase loading. As p130Cas phosphorylation and Rac activation are common downstream targets for alpha5beta1-stimulated FAK activation, our results support the existence of a novel alpha4 cytoplasmic domain connection leading to c-Src activation which functions as a FAK-independent linkage to a common motility-promoting signaling pathway.
Collapse
Affiliation(s)
- Datsun A Hsia
- The Scripps Research Institute, Department of Immunology, IMM21, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|