1
|
Alves SAS, Teixeira DE, Peruchetti DB, Silva LS, Brandão LFP, Caruso-Neves C, Pinheiro AAS. Bradykinin produced during Plasmodium falciparum erythrocytic cycle drives monocyte adhesion to human brain microvascular endothelial cells. Brain Res 2024; 1822:148669. [PMID: 37951562 DOI: 10.1016/j.brainres.2023.148669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.
Collapse
Affiliation(s)
- Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felipe P Brandão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Escriche‐Navarro B, Escudero A, Lucena‐Sánchez E, Sancenón F, García‐Fernández A, Martínez‐Máñez R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200756. [PMID: 35866466 PMCID: PMC9475525 DOI: 10.1002/advs.202200756] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy has emerged in the past decade as a promising strategy for treating many forms of cancer by stimulating the patient's immune system. Although immunotherapy has achieved some promising results in clinics, more efforts are required to improve the limitations of current treatments related to lack of effective and targeted cancer antigens delivery to immune cells, dose-limiting toxicity, and immune-mediated adverse effects, among others. In recent years, the use of nanomaterials has proven promising to enhance cancer immunotherapy efficacy and reduce side effects. Among nanomaterials, attention has been recently paid to mesoporous silica nanoparticles (MSNs) as a potential multiplatform for enhancing cancer immunotherapy by considering their unique properties, such as high porosity, and good biocompatibility, facile surface modification, and self-adjuvanticity. This review explores the role of MSN and other nano/micro-materials as an emerging tool to enhance cancer immunotherapy, and it comprehensively summarizes the different immunotherapeutic strategies addressed to date by using MSN.
Collapse
Affiliation(s)
- Blanca Escriche‐Navarro
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
| | - Andrea Escudero
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Elena Lucena‐Sánchez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Félix Sancenón
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Alba García‐Fernández
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Ramón Martínez‐Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| |
Collapse
|
3
|
Jiang C, Zhao ML, Ramos L, Dobaczewska K, Herbert R, Hobbie K, Mikulski Z, Verkoczy L, Diaz M. The Role of IgM Antibodies in T Cell Lymphoma Protection in a Novel Model Resembling Anaplastic Large Cell Lymphoma. THE JOURNAL OF IMMUNOLOGY 2021; 206:2468-2477. [PMID: 33883189 DOI: 10.4049/jimmunol.2001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
MRL/lpr mice typically succumb to immune complex-mediated nephritis within the first year of life. However, MRL/lpr mice that only secrete IgM Abs because of activation-induced deaminase deficiency (AID-/-MRL/lpr mice) experienced a dramatic increase in survival. Further crossing of these mice to those incapable of making secretory IgM (μS mice) generated mice lacking any secreted Abs but with normal B cell receptors. Both strains revealed no kidney pathology, yet Ab-deficient mice still experienced high mortality. In this article, we report Ab-deficient MRL/lpr mice progressed to high-grade T cell lymphoma that can be reversed with injection of autoreactive IgM Abs or following adoptive transfer of IgM-secreting MRL/lpr B cells. Anti-nuclear Abs, particularly anti-dsDNA IgM Abs, exhibited tumor-killing activities against a murine T cell lymphoma cell line. Passive transfers of autoreactive IgM Abs into p53-deficient mice increased survival by delaying onset of T cell lymphoma. The lymphoma originated from a double-negative aberrant T cell population seen in MRL/lpr mice and most closely resembled human anaplastic large cell lymphoma. Combined, these results strongly implicate autoreactive IgM Abs in protection against T cell lymphoma.
Collapse
Affiliation(s)
- Chuancang Jiang
- Somatic Hypermutation Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Ming-Lang Zhao
- Somatic Hypermutation Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Luis Ramos
- San Diego Biomedical Research Institute, San Diego, CA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | - Ronald Herbert
- Cellular and Molecular Pathology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Kristen Hobbie
- Integrated Laboratory Systems, Research Triangle Park, NC
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | | | - Marilyn Diaz
- Somatic Hypermutation Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC .,San Diego Biomedical Research Institute, San Diego, CA
| |
Collapse
|
4
|
Lu H, Betancur A, Chen M, Ter Meulen JH. Toll-Like Receptor 4 Expression on Lymphoma Cells Is Critical for Therapeutic Activity of Intratumoral Therapy With Synthetic TLR4 Agonist Glucopyranosyl Lipid A. Front Oncol 2020; 10:1438. [PMID: 32974162 PMCID: PMC7466407 DOI: 10.3389/fonc.2020.01438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
Intratumoral (IT) injections of Glucopyranosyl lipid A (G100), a synthetic toll-like receptor 4 (TLR4) agonist formulated in a stable emulsion, resulted in T-cell inflammation of the tumor microenvironment (TME) and complete cure of 60% of mice with large established A20 lymphomas. Strong abscopal effects on un-injected lesions were observed in a bilateral tumor model and surviving mice resisted a secondary tumor challenge. Depletion of CD8 T-cells, but not CD4 or NK cells, abrogated the anti-tumor effect. Unexpectedly, TLR4 knock-out rendered A20 tumors completely non-responsive to G100. In vitro studies showed that GLA has direct effect on A20 cells, but not on A20 cells deficient for TLR4. As shown by genotyping and phenotyping analysis, G100 strongly activated antigen presentation functions in A20 cells in vitro and in vivo and induced their apoptosis in a dose dependent manner. Similarly, the TLR4 positive human mantle cell lymphoma line Mino showed in vitro activation with G100 that was blocked with an anti-TLR4 antibody. In the A20 model, direct activation of B-lymphoma cells with G100 is sufficient to induce protective CD8 T-cell responses and TLR4 expressing human B-cell lymphomas may be amenable to this therapy as well.
Collapse
Affiliation(s)
- Hailing Lu
- Immune Design Corp., Seattle, WA, United States
| | | | | | | |
Collapse
|
5
|
Geng G, Yu X, Jiang J, Yu X. Aetiology and pathogenesis of paraneoplastic autoimmune disorders. Autoimmun Rev 2019; 19:102422. [PMID: 31733369 DOI: 10.1016/j.autrev.2019.102422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
Paraneoplastic autoimmune disorders (PAD) represent a group of autoimmune diseases associated with neoplasms. As a consequence of a remote autoimmunity-mediated effect, PAD are found in multiple organs or tissues, including the skin, blood and nervous system. Compared with non-paraneoplastic autoimmune diseases, PAD have different aetiologies, pathologies, disease symptoms and treatment responses. There are two main origins of autoimmunity in PAD: neoplasm-mediated dysregulated homeostasis in immune cells/organs and in autoantigens. Pathologically, PAD are mediated predominantly by either autoantibodies or autoreactive T-cells. In the past decade, significant progress has been achieved in increasing our understanding of the aetiology and pathology of PAD. In this review article, we aim to provide a comprehensive overview of the recent advances in this field.
Collapse
Affiliation(s)
- Guojun Geng
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xiuyi Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jie Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, 23845, Borstel, Germany.
| |
Collapse
|
6
|
Nijland M, Veenstra RN, Visser L, Xu C, Kushekhar K, van Imhoff GW, Kluin PM, van den Berg A, Diepstra A. HLA dependent immune escape mechanisms in B-cell lymphomas: Implications for immune checkpoint inhibitor therapy? Oncoimmunology 2017; 6:e1295202. [PMID: 28507804 PMCID: PMC5414870 DOI: 10.1080/2162402x.2017.1295202] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 02/09/2023] Open
Abstract
Antigen presentation by tumor cells in the context of Human Leukocyte Antigen (HLA) is generally considered to be a prerequisite for effective immune checkpoint inhibitor therapy. We evaluated cell surface HLA class I, HLA class II and cytoplasmic HLA-DM staining by immunohistochemistry (IHC) in 389 classical Hodgkin lymphomas (cHL), 22 nodular lymphocyte predominant Hodgkin lymphomas (NLPHL), 137 diffuse large B-cell lymphomas (DLBCL), 39 primary central nervous system lymphomas (PCNSL) and 19 testicular lymphomas. We describe a novel mechanism of immune escape in which loss of HLA-DM expression results in aberrant membranous invariant chain peptide (CLIP) expression in HLA class II cell surface positive lymphoma cells, preventing presentation of antigenic peptides. In HLA class II positive cases, HLA-DM expression was lost in 49% of cHL, 0% of NLPHL, 14% of DLBCL, 3% of PCNSL and 0% of testicular lymphomas. Considering HLA class I, HLA class II and HLA-DM together, 88% of cHL, 10% of NLPHL, 62% of DLBCL, 77% of PCNSL and 87% of testicular lymphoma cases had abnormal HLA expression patterns. In conclusion, an HLA expression pattern incompatible with normal antigen presentation is common in cHL, DLBCL, PCNSL and testicular lymphoma. Retention of CLIP in HLA class II caused by loss of HLA-DM is a novel immune escape mechanism, especially prevalent in cHL. Aberrant HLA expression should be taken into account when evaluating efficacy of checkpoint inhibitors in B-cell lymphomas.
Collapse
Affiliation(s)
- Marcel Nijland
- Department of Hematology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rianne N Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Chuanhui Xu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Kushi Kushekhar
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Gustaaf W van Imhoff
- Department of Hematology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Philip M Kluin
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68:134-147. [PMID: 27755997 DOI: 10.1016/j.ejca.2016.09.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022]
Abstract
Downregulation/loss of the antigen presentation is a major immune escape mechanism in cancer. It allows tumour cells to become 'invisible' and avoid immune attack by antitumour T cells. In tumour harbouring properties of professional antigen presenting cells (i.e. tumour B cells in lymphoma), downregulation/loss of the antigen presentation may also prevent direct priming of naïve T cells by tumour cells. Here, we review treatments that may induce/restore antigen presentation by the tumour cells. These treatments may increase the generation of antitumour T cells and/or their capacity to recognise and eliminate tumour cells. By forcing tumour cells to present their antigens, these treatments may sensitise patients to T cell-based immunotherapies, including checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Aurélien Marabelle
- Gustave Roussy, Université Paris-Saclay, Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, F-94805, France; INSERM U1015, Villejuif, F-94805, France
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, Rennes, France; INSERM, U917, F-35043, Rennes, France.
| |
Collapse
|
8
|
Mottok A, Woolcock B, Chan FC, Tong KM, Chong L, Farinha P, Telenius A, Chavez E, Ramchandani S, Drake M, Boyle M, Ben-Neriah S, Scott DW, Rimsza LM, Siebert R, Gascoyne RD, Steidl C. Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression. Cell Rep 2015; 13:1418-1431. [PMID: 26549456 DOI: 10.1016/j.celrep.2015.10.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/17/2015] [Accepted: 10/04/2015] [Indexed: 02/06/2023] Open
Abstract
Primary mediastinal large B cell lymphoma (PMBCL) is an aggressive non-Hodgkin's lymphoma, predominantly affecting young patients. We analyzed 45 primary PMBCL tumor biopsies and 3 PMBCL-derived cell lines for the presence of genetic alterations involving the major histocompatibility complex (MHC) class II transactivator CIITA and found frequent aberrations consisting of structural genomic rearrangements, missense, nonsense, and frame-shift mutations (53% of primary tumor biopsies and all cell lines). We also detected intron 1 mutations in 47% of the cases, and detailed sequence analysis strongly suggests AID-mediated aberrant somatic hypermutation as the mutational mechanism. Furthermore, we demonstrate that genomic lesions in CIITA result in decreased protein expression and reduction of MHC class II surface expression, creating an immune privilege phenotype in PMBCL. In summary, we establish CIITA alterations as a common mechanism of immune escape through reduction of MHC class II expression in PMBCL, with potential implications for future treatments targeting microenvironment-related biology.
Collapse
Affiliation(s)
- Anja Mottok
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Bruce Woolcock
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Fong Chun Chan
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Bioinformatics Training Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
| | - King Mong Tong
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lauren Chong
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Bioinformatics Training Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Elizabeth Chavez
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suvan Ramchandani
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Marie Drake
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lisa M Rimsza
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Randy D Gascoyne
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
9
|
Cycon KA, Mulvaney K, Rimsza LM, Persky D, Murphy SP. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma. Immunology 2013; 140:259-72. [PMID: 23789844 DOI: 10.1111/imm.12136] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin's lymphoma (NHL) diagnosed in the USA, consists of at least two distinct subtypes: germinal centre B (GCB) and activated B-cell (ABC). Decreased MHC class II (MHCII) expression on the tumours in both DLBCL subtypes directly correlates with significant decreases in patient survival. One common mechanism accounting for MHCII down-regulation in DLBCL is reduced expression of the MHC class II transactivator (CIITA), the master regulator of MHCII transcription. Furthermore, reduced CIITA expression in ABC DLBCL correlates with the presence of the transcriptional repressor positive regulatory domain-I-binding factor-1 (PRDI-BF1). However, the mechanisms underlying down-regulation of CIITA in GCB DLBCL are currently unclear. In this study, we demonstrate that neither PRDI-BF1 nor CpG hypermethylation at the CIITA promoters are responsible for decreased CIITA in GCB DLBCL. In contrast, histone modifications associated with an open chromatin conformation and active transcription were significantly lower at the CIITA promoters in CIITA(-) GCB cells compared with CIITA(+) B cells, which suggests that epigenetic mechanisms contribute to repression of CIITA transcription. Treatment of CIITA(-) or CIITA(low) GCB cells with several different histone deacetylase inhibitors (HDACi) activated modest CIITA and MHCII expression. However, CIITA and MHCII levels were significantly higher in these cells after exposure to the HDAC-1-specific inhibitor MS-275. These results suggest that CIITA transcription is repressed in GCB DLBCL cells through epigenetic mechanisms involving HDACs, and that HDACi treatment can alleviate repression. These observations may have important implications for patient therapy.
Collapse
|
10
|
A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells. Glycoconj J 2013; 30:687-99. [DOI: 10.1007/s10719-013-9473-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 12/12/2022]
|