1
|
Dokhanchi M, Javaherdehi AP, Raad M, Khalilollah S, Mahdavi P, Razizadeh MH, Zafarani A. Natural Killer Cells in Cancers of Respiratory System and Their Applications in Therapeutic Approaches. Immun Inflamm Dis 2024; 12:e70079. [PMID: 39588940 PMCID: PMC11590036 DOI: 10.1002/iid3.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Cancer is still regarded as a major worldwide health issue due to its high health and socioeconomic burden. Currently, lung cancer is the most common cause of cancer-related fatalities globally. Additionally, mesotheliomas and other cancers of the respiratory system, including those of the trachea, larynx, and bronchi, are also posing a significant health threat. Natural killer (NK) cells are lymphocytes of the innate immune system involved in response against cancer. OBJECTIVE This review discussed recent findings in the context of NK cell activity in the immune surveillance of respiratory system cancers and NK cell-based treatments to combat those malignancies. RESULTS The presence of natural killer cells in the tumor microenvironment is shown to be associated with a higher survival rate in patients with various malignancies. However, cancerous cells benefit from several mechanisms to evade natural killer cell-mediated cytotoxicity, including reduced major histocompatibility complex I expression, shedding of ligands, upregulation of inhibitory receptors, and release of soluble factors. Using NK cells to design therapeutic approaches may enhance antitumor immunity and improve clinical outcomes. Clinical trials investigating the use of natural killer cells in combination with cytokine stimulation or immune checkpoint inhibitors have exhibited promising results in various respiratory system malignancies. CONCLUSION Respiratory system cancers present significant health challenges worldwide, and while NK cells play a crucial role in tumor surveillance, tumors often evade NK cell responses through various mechanisms. Advances in NK cell-based therapies, including CAR-NK cells, immune checkpoint inhibitors, and cytokine stimulation, have shown promising outcomes in tackling these tactics. However, challenges such as the immunosuppressive tumor microenvironment persist. Ongoing research is crucial to improve NK cell therapies by targeting autophagy, modulating miRNAs, and developing combinatorial approaches to enhance treatment efficacy for respiratory cancers.
Collapse
Affiliation(s)
- Maryam Dokhanchi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Mohammad Raad
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Shayan Khalilollah
- School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Pooya Mahdavi
- College of Public HealthUniversity of South FloridaTampaFloridaUSA
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Alireza Zafarani
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Hematology & Blood Banking, School of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Hontecillas-Prieto L, García-Domínguez DJ, Palazón-Carrión N, Martín García-Sancho A, Nogales-Fernández E, Jiménez-Cortegana C, Sánchez-León ML, Silva-Romeiro S, Flores-Campos R, Carnicero-González F, Ríos-Herranz E, de la Cruz-Vicente F, Rodríguez-García G, Fernández-Álvarez R, Martínez-Banaclocha N, Gumà-Padrò J, Gómez-Codina J, Salar-Silvestre A, Rodríguez-Abreu D, Gálvez-Carvajal L, Labrador J, Guirado-Risueño M, Provencio-Pulla M, Sánchez-Beato M, Marylene L, Álvaro-Naranjo T, Casanova-Espinosa M, Rueda-Domínguez A, Sánchez-Margalet V, de la Cruz-Merino L. CD8+ NKs as a potential biomarker of complete response and survival with lenalidomide plus R-GDP in the R2-GDP-GOTEL trial in recurrent/refractory diffuse large B cell lymphoma. Front Immunol 2024; 15:1293931. [PMID: 38469299 PMCID: PMC10926187 DOI: 10.3389/fimmu.2024.1293931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma worldwide. DLBCL is an aggressive disease that can be cured with upfront standard chemoimmunotherapy schedules. However, in approximately 35-40% of the patients DLBCL relapses, and therefore, especially in this setting, the search for new prognostic and predictive biomarkers is an urgent need. Natural killer (NK) are effector cells characterized by playing an important role in antitumor immunity due to their cytotoxic capacity and a subset of circulating NK that express CD8 have a higher cytotoxic function. In this substudy of the R2-GDP-GOTEL trial, we have evaluated blood CD8+ NK cells as a predictor of treatment response and survival in relapsed/refractory (R/R) DLBCL patients. Methods 78 patients received the R2-GDP schedule in the phase II trial. Blood samples were analyzed by flow cytometry. Statistical analyses were carried out in order to identify the prognostic potential of CD8+ NKs at baseline in R/R DLBCL patients. Results Our results showed that the number of circulating CD8+ NKs in R/R DLBCL patients were lower than in healthy donors, and it did not change during and after treatment. Nevertheless, the level of blood CD8+ NKs at baseline was associated with complete responses in patients with R/R DLBCL. In addition, we also demonstrated that CD8+ NKs levels have potential prognostic value in terms of overall survival in R/R DLBCL patients. Conclusion CD8+ NKs represent a new biomarker with prediction and prognosis potential to be considered in the clinical management of patients with R/R DLBCL. Clinical trial registration https://www.clinicaltrialsregister.eu/ctr-search/search?query=2014-001620-29 EudraCT, ID:2014-001620-29.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
| | - Natalia Palazón-Carrión
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Alejandro Martín García-Sancho
- Department of Hematology, Hospital Universitario de Salamanca, IBSAL, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Esteban Nogales-Fernández
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - María L. Sánchez-León
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Silvia Silva-Romeiro
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Rocío Flores-Campos
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | | | | | | | | | | | - Natividad Martínez-Banaclocha
- Oncology Dept., Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Josep Gumà-Padrò
- Department of Clinical Oncology, Hospital Universitari Sant Joan de Reus URV, IISPV, Reus, Spain
| | - José Gómez-Codina
- Department of Clinical Oncology, Hospital Universitario La Fé, Valencia, Spain
| | | | - Delvys Rodríguez-Abreu
- Department of Clinical Oncology, Hospital Universitario Insular, Las Palmas de Gran Canaria, Spain
| | - Laura Gálvez-Carvajal
- Department of Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Jorge Labrador
- Department of Hematology, Research Unit, Hospital Universitario de Burgos, Burgos, Spain
| | - María Guirado-Risueño
- Department of Clinical Oncology, Hospital General Universitario de Elche, Elche, Spain
| | - Mariano Provencio-Pulla
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, Facultad de Medicina, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| | - Margarita Sánchez-Beato
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, CIBERONC, Madrid, Spain
| | - Lejeune Marylene
- Department of Pathology, Plataforma de Estudios Histológicos, Citológicos y de Digitalización, Hospital de Tortosa Verge de la Cinta, IISPV, URV, Tortosa, Tarragona, Spain
| | - Tomás Álvaro-Naranjo
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Tarragona, Spain
| | | | | | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
3
|
Wang HY, Cui XW, Zhang YH, Chen Y, Lu NN, Bai L, Duan ZP. Dynamic changes of phenotype and function of natural killer cells in peripheral blood before and after thermal ablation of hepatitis B associated hepatocellular carcinoma and their correlation with tumor recurrence. BMC Cancer 2023; 23:486. [PMID: 37254046 PMCID: PMC10228897 DOI: 10.1186/s12885-023-10823-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Thermal therapy induces an immune response in patients with hepatocellular carcinoma (HCC), but the dynamic characteristics of the natural killer (NK) cell immune response post-thermal ablation remain unclear. We conducted a prospective longitudinal cohort study to observe the dynamic changes of phenotype and function of NK cells in peripheral blood before and after thermal ablation of hepatitis B-associated HCC and their correlation with tumor recurrence. METHODS Fifty-six patients clinically and pathologically confirmed with hepatitis B-associated HCC were selected for thermal ablation. Peripheral blood was collected on day 0, day 7, and month 1. NK cell subsets, receptors, and killing function were detected by flow cytometry, and the LDH levels were examined. Overall recurrence and associated variables were estimated using Kaplan-Meier, log-rank, and Cox proportional-hazards analyses. RESULTS The frequency of CD3-CD56+ cells was increased on day 7 (P < 0.01) without significant differences between D0 and M1. NKG2D, NKp44, NKp30, CD159a, and CD158a expression was increased on M1 (all P < 0.05). The granzyme B and IFN-γ expression in NK cells were higher on M1 vs. D0 (P < 0.05). On day 7, the NK cell lysis activity of the target K562 cells was increased (P < 0.01) but decreased on M1 (P < 0.05). Survival analysis showed that CD158a expression and IFN-γ and perforin release on day 0 were associated with the risk of HCC recurrence. Cox regression analysis showed that the expression changes in CD56, NKp46, granzyme B, and perforin (D7-D0) induced by thermal ablation were associated with recurrence-free survival (RFS) of patients with HCC. CONCLUSION Thermal ablation increased the frequency and function of CD3-CD56+ NK cells in the peripheral blood of patients with HCC. These cells tended to be more differentiated and activated. Notably, expression levels of NK cell receptors NKp46, perforin, and granzyme B were associated with RFS.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Biomedical Information Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Xiong-Wei Cui
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yong-Hong Zhang
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Biomedical Information Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Ning-Ning Lu
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Li Bai
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Zhong-Ping Duan
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China.
| |
Collapse
|
4
|
Azoulay T, Slouzky I, Karmona M, Filatov M, Hayun M, Ofran Y, Sarig G, Ringelstein-Harlev S. Compromised activity of natural killer cells in diffuse large b-cell lymphoma is related to lymphoma-induced modification of their surface receptor expression. Cancer Immunol Immunother 2023; 72:707-718. [PMID: 36048214 DOI: 10.1007/s00262-022-03284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
While natural killer (NK) cells are essential players in detection and elimination of malignant cells, these surveillance properties can be compromised by cancer cells. Since NK cell education primarily occurs in the bone marrow and lymphoid tissue, this process might be particularly affected by their infiltration with lymphoma cells. This study aimed to explore functional properties of diffuse large B-cell lymphoma (DLBCL) patient NK cells, which could potentially promote tumour immune evasion and disease propagation.NK cells isolated from the peripheral blood (PB) of 26 DLBCL patients and 13 age-matched healthy controls (HC) were analysed. The cytotoxic CD56dim subtype was the only one identified in patients. Compared to HC, patient cells demonstrated low levels of inhibitory CD158a/b along with decreased expression of activating NKG2D and CD161 and increased inhibitory NKG2A levels. Patient NK cell cytotoxic activity was impaired, as were their degranulation and inflammatory cytokine production, which partially recovered following non-receptor-dependant stimulation.The phenotypically skewed and restricted population of patient NK cells, along with their blunted cytotoxic and immune-regulatory activity, appear to be driven by exposure to lymphoma environment. These NK cell functional aberrations could support lymphoma immune evasion and should be considered in the era of cellular therapy.
Collapse
Affiliation(s)
- Tehila Azoulay
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Ilana Slouzky
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Michal Karmona
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | | | - Michal Hayun
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel.,Department of Hematology, Shaare Zedek Medical Center and Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Sarig
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
5
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Hematian Larki M, Ashouri E, Barani S, Ghayumi SMA, Ghaderi A, Rajalingam R. KIR-HLA gene diversities and susceptibility to lung cancer. Sci Rep 2022; 12:17237. [PMID: 36241658 PMCID: PMC9568660 DOI: 10.1038/s41598-022-21062-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIR) are essential for acquiring natural killer (NK) cell effector function, which is modulated by a balance between the net input of signals derived from inhibitory and activating receptors through engagement by human leukocyte antigen (HLA) class I ligands. KIR and HLA loci are polygenic and polymorphic and exhibit substantial variation between individuals and populations. We attempted to investigate the contribution of KIR complex and HLA class I ligands to the genetic predisposition to lung cancer in the native population of southern Iran. We genotyped 16 KIR genes for a total of 232 patients with lung cancer and 448 healthy controls (HC), among which 85 patients and 178 HCs were taken into account for evaluating combined KIR-HLA associations. KIR2DL2 and 2DS2 were increased significantly in patients than in controls, individually (OR 1.63, and OR 1.42, respectively) and in combination with HLA-C1 ligands (OR 1.99, and OR 1.93, respectively). KIR3DS1 (OR 0.67) and 2DS1 (OR 0.69) were more likely presented in controls in the absence of their relative ligands. The incidence of CxTx subset was increased in lung cancer patients (OR 1.83), and disease risk strikingly increased by more than fivefold among genotype ID19 carriers (a CxTx genotype that carries 2DL2 in the absence of 2DS2, OR 5.92). We found that genotypes with iKIRs > aKIRs (OR 1.67) were more frequently presented in lung cancer patients. Additionally, patients with lung cancer were more likely to carry the combination of CxTx/2DS2 compared to controls (OR 2.04), and iKIRs > aKIRs genotypes in the presence of 2DL2 (OR 2.05) increased the likelihood of lung cancer development. Here we report new susceptibility factors and the contribution of KIR and HLA-I encoding genes to lung cancer risk, highlighting an array of genetic effects and disease setting which regulates NK cell responsiveness. Our results suggest that inherited KIR genes and HLA-I ligands specifying the educational state of NK cells can modify lung cancer risk.
Collapse
Affiliation(s)
- Marjan Hematian Larki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ashouri
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghik Barani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Sönmez C, Wölfer J, Holling M, Brokinkel B, Stummer W, Wiendl H, Thomas C, Schulte-Mecklenbeck A, Grauer OM. Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas. Sci Rep 2022; 12:6769. [PMID: 35474089 PMCID: PMC9042843 DOI: 10.1038/s41598-022-10680-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) comprise a group of highly polymorphic inhibitory receptors which are specific for classical HLA class-I molecules. Peripheral blood and freshly prepared tumor cell suspensions (n = 60) as well as control samples (n = 32) were investigated for the distribution, phenotype, and functional relevance of CD158ab/KIR2DL1,-2/3 expressing NK-cells in glioblastoma (GBM) patients. We found that GBM were scarcely infiltrated by NK-cells that preferentially expressed CD158ab/KIR2DL1,-2/3 as inhibitory receptors, displayed reduced levels of the activating receptors CD335/NKp46, CD226/DNAM-1, CD159c/NKG2C, and showed diminished capacity to produce IFN-γ and perforin. Functional hypoactivity of GBM-derived NK-cells persisted despite IL-2 preactivation. Blockade with a specific KIR2DL-1,2/3 monoclonal antibody reversed NK-cell inhibition and significantly enhanced degranulation and IFN-γ production of IL-2 preactivated NK-cells in the presence of primary GBM cells and HLA-C expressing but not HLA class-I deficient K562 cells. Additional analysis revealed that significant amounts of IL-2 could be produced by tumor-derived CD4+ and CD8+CD45RA- memory T-cells after combined anti-CD3/anti-CD28 stimulation. Our data indicate that both blockade of inhibitory KIR and IL-2 triggering of tumor-derived NK-cells are necessary to enhance NK-cell responsiveness in GBM.
Collapse
Affiliation(s)
- Cüneyt Sönmez
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.,Department of Spine Surgery, Klinikum Herford, 32049, Herford, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany.,Department of Neurosurgery and Spine Surgery, Hufeland Klinikum GmbH, 99974, Mühlhausen, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Oliver M Grauer
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
8
|
Hamilton G, Plangger A. The Impact of NK Cell-Based Therapeutics for the Treatment of Lung Cancer for Biologics: Targets and Therapy. Biologics 2021; 15:265-277. [PMID: 34262255 PMCID: PMC8273903 DOI: 10.2147/btt.s290305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Lung cancer has a dismal prognosis and novel targeted therapies leave still room for major improvements and better outcomes. Immunotherapy targeting immune checkpoint (IC) proteins, either as single agents or in combination with chemotherapy, is active but responders constitute only approximately 10-15% of non-small cell lung cancer (NSCLC) patients. Other effector immune cells such as CAR-T cells or NK cells may help to overcome the limitations of the IC inhibitor therapies for lung cancer. NK cells can kill tumor cells without previous priming and are present in the circulatory system and lymphoid organs. Tissue-residing NK cells differ from peripheral effector cells and, in case of the lung, comprise CD56bright CD16-negative populations showing high cytokine release but low cytotoxicity in contrast to the circulating CD56dim CD16-positive NK cells exhibiting high cytotoxic efficacy. This local attenuation of NK cell killing potency seems due to a specific stage of NK differentiation, immunosuppressive factors as well as presence of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (TREGs). Improved NK cell-based immunotherapies involve IL-2-stimulated effector cells, NK cells expanded with the help of cytokines, permanent NK cell lines, induced pluripotent stem cell-derived NK cells and NK cells armed with chimeric antigen receptors. Compared to CAR T cell therapy, NK cells administration is devoid of graft-versus-host disease (GvHD) and cytokine-release syndrome. Although NK cells are clearly active against lung cancer cells, the low-cytotoxicity differentiation state in lung tumors, the presence of immunosuppressive leucocyte populations, limited infiltration and adverse conditions of the microenvironment need to be overcome. This goal may be achieved in the future using large numbers of activated and armed NK cells as provided by novel methods in NK cell isolation, expansion and stimulation of cytotoxic activity, including combinations with monoclonal antibodies in antibody-dependent cytotoxicity (ADCC). This review discusses the basic characteristics of NK cells and the potential of NK cell preparations in cancer therapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Niu C, Chen Y, Li M, Zhu S, Zhou L, Xu D, Li Z, Xu J, Li W, Wang Y, Cui J. Non-Coated Rituximab Induces Highly Cytotoxic Natural Killer Cells From Peripheral Blood Mononuclear Cells via Autologous B Cells. Front Immunol 2021; 12:658562. [PMID: 34113342 PMCID: PMC8185348 DOI: 10.3389/fimmu.2021.658562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Natural killer (NK) cells are becoming valuable tools for cancer therapy because of their cytotoxicity against tumor cells without prior sensitization and their involvement in graft-versus-host disease; however, it is difficult to obtain highly cytotoxic NK cells without adding extra feeder cells. In this study, we developed a new method for obtaining highly cytotoxic NK cells from peripheral blood mononuclear cells (PBMCs) independently of extra feeder cell addition using rituximab not coated on a flask (non-coated rituximab). We found that rituximab could promote both the activation and expansion of NK cells from PBMCs, irrespective of being coated on a flask or not. However, NK cells activated by non-coated rituximab had much greater antitumor activity against cancer cells, and these effects were dependent on autologous living B cells. The antibody-dependent cellular cytotoxicity effect of NK cells activated by non-coated rituximab was also more substantial. Furthermore, these cells expressed higher levels of CD107a, perforin, granzyme B, and IFN-γ. However, there was no difference in the percentage, apoptosis, and cell-cycle progression of NK cells induced by coated and non-coated rituximab. Non-coated rituximab activated NK cells by increasing AKT phosphorylation, further enhancing the abundance of XBP1s. In conclusion, we developed a new method for amplifying NK cells with higher antitumor functions with non-coated rituximab via autologous B cells from PBMCs, and this method more efficiently stimulated NK cell activation than by using coated rituximab.
Collapse
Affiliation(s)
- Chao Niu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yongchong Chen
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng Xu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaozhi Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jianting Xu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yufeng Wang
- Cancer Institute, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Abstract
Immunotherapy has become the mainstay for lung cancer treatment, providing sustained therapeutic responses and improved prognosis compared with those obtained with surgery, chemotherapy, radiotherapy, and targeted therapy. It has the potential for anti-tumor treatment and killing tumor cells by activating human immunity and has moved the targets of anti-cancer therapy from malignant tumor cells to immune cell subsets. Two kinds of immune checkpoints, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1), are the main targets of current immunotherapy in lung cancer. Despite the successful outcomes achieved by immune checkpoint inhibitors, a small portion of lung cancer patients remain unresponsive to checkpoint immunotherapy or may ultimately become resistant to these agents as a result of the complex immune modulatory network in the tumor microenvironment. Therefore, it is imperative to exploit novel immunotherapy targets to further expand the proportion of patients benefiting from immunotherapy. This review summarizes the molecular features, biological function, and clinical significance of several novel checkpoints that have important roles in lung cancer immune responses beyond the CTLA-4 and PD-1/PD-L1 axes, including the markers of co-inhibitory and co-stimulatory T lymphocyte pathways and inhibitory markers of macrophages and natural killer cells.
Collapse
|
11
|
Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, Zhang Z, Xie J, Wang C, Chen D, Huang Y, Wei X, Shi Y, Zhao Z, Li Y, Guo Z, Yu Q, Xu L, Volpe G, Qiu S, Zhou J, Ward C, Sun H, Yin Y, Xu X, Wang X, Esteban MA, Yang H, Wang J, Dean M, Zhang Y, Liu S, Yang X, Fan J. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 2021; 184:404-421.e16. [PMID: 33357445 DOI: 10.1016/j.cell.2020.11.041] [Citation(s) in RCA: 492] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/24/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) has high relapse and low 5-year survival rates. Single-cell profiling in relapsed HCC may aid in the design of effective anticancer therapies, including immunotherapies. We profiled the transcriptomes of ∼17,000 cells from 18 primary or early-relapse HCC cases. Early-relapse tumors have reduced levels of regulatory T cells, increased dendritic cells (DCs), and increased infiltrated CD8+ T cells, compared with primary tumors, in two independent cohorts. Remarkably, CD8+ T cells in recurrent tumors overexpressed KLRB1 (CD161) and displayed an innate-like low cytotoxic state, with low clonal expansion, unlike the classical exhausted state observed in primary HCC. The enrichment of these cells was associated with a worse prognosis. Differential gene expression and interaction analyses revealed potential immune evasion mechanisms in recurrent tumor cells that dampen DC antigen presentation and recruit innate-like CD8+ T cells. Our comprehensive picture of the HCC ecosystem provides deeper insights into immune evasion mechanisms associated with tumor relapse.
Collapse
Affiliation(s)
- Yunfan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China
| | - Liang Wu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Yu Zhong
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kaiqian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China
| | - Yong Hou
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| | - Zifei Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Zefan Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China
| | - Jiarui Xie
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunqing Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Dandan Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Yaling Huang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Xiaochan Wei
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Yinghong Shi
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Zhikun Zhao
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Yuehua Li
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Ziwei Guo
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Qichao Yu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Liqin Xu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shuangjian Qiu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huichuan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China
| | - Ye Yin
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Xiangdong Wang
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China
| | - Miguel A Esteban
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Jian Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; James D. Watson Institute of Genome Science, Hangzhou 310008, China
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute Rockville, MD 20850, USA
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shiping Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China.
| | - Xinrong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China.
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai 200032, China.
| |
Collapse
|
12
|
Fernández-Lázaro D, González-Bernal JJ, Sánchez-Serrano N, Navascués LJ, Ascaso-del-Río A, Mielgo-Ayuso J. Physical Exercise as a Multimodal Tool for COVID-19: Could It Be Used as a Preventive Strategy? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228496. [PMID: 33212762 PMCID: PMC7697788 DOI: 10.3390/ijerph17228496] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) is a novel coronavirus not previously recognized in humans until late 2019. On 31 December 2019, a cluster of cases of pneumonia of unspecified etiology was reported to the World Health Organization in China. The availability of adequate SARS-CoV-2 drugs is also limited, and the efficacy and safety of these drugs for COVID-2019 pneumonia patients need to be assessed by further clinical trials. For these reasons, there is a need for other strategies against COVID-19 that are capable of prevention and treatment. Physical exercise has proven to be an effective therapy for most chronic diseases and microbial infections with preventive/therapeutic benefits, considering that exercise involves primary immunological mediators and/or anti-inflammatory properties. This review aimed to provide an insight into how the implementation of a physical exercise program against COVID-19 may be a useful complementary tool for prevention, which can also enhance recovery, improve quality of life, and provide immune protection against SARS-CoV-2 virus infection in the long term. In summary, physical exercise training exerts immunomodulatory effects, controls the viral gateway, modulates inflammation, stimulates nitric oxide synthesis pathways, and establishes control over oxidative stress.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Correspondence: ; Tel.: +34-975-129-185
| | | | - Nerea Sánchez-Serrano
- Microbiology Unit of the Santa Bárbara Hospital, Castilla-Léon Health (SACyL), 42003 Soria, Spain;
| | - Lourdes Jiménez Navascués
- Department of Nursing, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain;
| | - Ana Ascaso-del-Río
- Clinical Pharmacology Service, IdISSC, San Carlos Clinical Hospital, 28040 Madrid, Spain;
| | - Juan Mielgo-Ayuso
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain;
| |
Collapse
|
13
|
Wu J, Liu J, Qu C, Wang Y, Zhu Y, Zhang Y, Li H, Zhang B, Sun Y, Zou W. Study of immune responses in mice to oral administration of Flor·Essence. Mol Clin Oncol 2020; 12:533-540. [PMID: 32337035 DOI: 10.3892/mco.2020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/18/2019] [Indexed: 11/06/2022] Open
Abstract
Flor·Essence (FE), a natural food grade herbal formula product manufactured by Flora Manufacturing & Distributing Ltd., has been used by patients with cancer in North America to stimulate immune cells in order to attenuate or reverse immune damage. To elucidate the mechanisms underlying the effects of FE on the immune system, spleen lymphocyte proliferation was analyzed by an MTT assay, and the phagocytic capacity of macrophages was measured via the neutral red phagocytosis method. The cytotoxicity of natural killer (NK) cells towards K562 cells was assessed via a CytoTox 96 assay. The production of the cytokines interleukin (IL)-12 and interferon (IFN)-γ in the peripheral blood was determined via ELISA and PCR analysis. The expression levels of caveolin-1 and NF-κB were measured via western blotting. In addition, cyclophosphamide was used to establish a mouse model of immunosuppression. It was found that the proliferation of splenocytes, the phagocytic capacity of macrophages and the cytotoxicity of NK cells against K562 cells were increased after oral administration of FE to mice. FE augmented the production of IL-12 and IFN-γ in the peripheral blood of mice. FE significantly increased the expression of proliferating cell nuclear antigen and caveolin-1, and decreased NF-κB expression. Finally, FE enhanced the viability of immune cells from cyclophosphamide-treated immunosuppressed mice. The results indicated that FE could activate immune responses and enhance natural immunity, suggesting that oral administration of FE can activate the body's immune response and resist damage caused by cyclophosphamide chemotherapy.
Collapse
Affiliation(s)
- Jingxin Wu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116081, P.R. China
| | - Jia Liu
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116081, P.R. China.,Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian, Liaoning 116029, P.R. China
| | - Yuxin Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116081, P.R. China
| | - Yan Zhu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116081, P.R. China
| | - Yejun Zhang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116081, P.R. China.,Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian, Liaoning 116029, P.R. China
| | - Hongyan Li
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116081, P.R. China.,Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian, Liaoning 116029, P.R. China
| | - Bingqiang Zhang
- Qingdao Ruiside Biotechnology Co., Ltd., Qingdao, Shandong 266111, P.R. China
| | - Yaru Sun
- Qingdao Ruiside Biotechnology Co., Ltd., Qingdao, Shandong 266111, P.R. China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116081, P.R. China.,Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian, Liaoning 116029, P.R. China
| |
Collapse
|
14
|
Rocco D, Gravara LD, Gridelli C. The New Immunotherapy Combinations in the Treatment of Advanced Non-Small Cell Lung Cancer: Reality and Perspectives. CURRENT CLINICAL PHARMACOLOGY 2020; 15:11-19. [PMID: 31400270 PMCID: PMC7497556 DOI: 10.2174/1574884714666190809124555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/13/2019] [Accepted: 07/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND In the recent years, immunotherapeutics and specifically immunecheckpoints inhibitors have marked a significant shift in the diagnostic and therapeutic algorithm of Non-Small Cell Lung Cancer (NSCLC), allowing us to use immunotherapeutics alone or combined with chemotherapy for a great subset of patients. However, new interesting approaches are being presently investigated, markedly immunotherapy combinations, that is, the use of two or more immunotherapeutics combined. METHODS In particular, the combination of anti-PD-1 nivolumab and anti-CTLA-4 ipilimumab has already provided groundbreaking positive results in the advanced NSCLC and other combinations are currently under investigation. RESULTS Therefore, this paper aims to provide a comprehensive state-of-the-art review about immunotherapy combination, along with suggestions about future directions. A comprehensive literature search was carried out to identify eligible studies from MEDLINE/PubMed and ClinicalTrials.gov. CONCLUSION Nivolumab plus ipilimumab represent the most promising immunotherapy combination for the treatment of advanced NSCLC patients; safety, tolerability and efficacy of new immunotherapeutics (in monotherapy and in immunotherapy combinations) must be further assessed in future studies.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, Naples, Italy
| | - Luigi D. Gravara
- Department of Experimental Medicine Luigi Vanvitelli University, Caserta, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, “S.G. Moscati” Hospital, Avellino, Italy
| |
Collapse
|
15
|
Niu C, Li M, Zhu S, Chen Y, Zhou L, Xu D, Xu J, Li Z, Li W, Cui J. PD-1-positive Natural Killer Cells have a weaker antitumor function than that of PD-1-negative Natural Killer Cells in Lung Cancer. Int J Med Sci 2020; 17:1964-1973. [PMID: 32788875 PMCID: PMC7415385 DOI: 10.7150/ijms.47701] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Antibodies targeting the immune checkpoint inhibitor, programmed cell death 1 (PD-1), have provided a breakthrough in the treatment of lung cancer. However, the function of PD-1 in natural killer (NK) cells of cancer patients remains unclear. Herein, we analyzed the expression of PD-1 on the NK cells in the peripheral blood of patients with lung cancer and found that the level of PD-1+ NK cells in patients was significantly higher than that in healthy individuals. Moreover, these PD-1+ NK cells demonstrated a weaker ability to secrete interferon-gamma (INF-γ), granzyme B, and perforin, and exhibited lower CD107a expression. Importantly, in patients with lung cancer, the percentage of PD-1+ NK cells was significantly positively correlated with the concentration of IL-2 in the plasma, which was also higher than that in healthy individuals. In addition, IL-2 could increase the expression of PD-1 on NK cells in vitro, indicating that high IL-2 level in the plasma is largely responsible for the abundance of PD-1+ NK cells in patients with lung cancer. These findings demonstrate intriguing mechanisms for understanding the expression of PD-1 on NK cells and the function of PD-1+ NK cells in lung cancer. This study confirms and extends previous studies demonstrating that PD-1 can negatively regulate the antitumor function of NK cells.
Collapse
Affiliation(s)
- Chao Niu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan Zhu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Yongchong Chen
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Zhou
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Dongsheng Xu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jianting Xu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhaozhi Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Hong G, Chen X, Sun X, Zhou M, Liu B, Li Z, Yu Z, Gao W, Liu T. Effect of autologous NK cell immunotherapy on advanced lung adenocarcinoma with EGFR mutations. PRECISION CLINICAL MEDICINE 2019; 2:235-245. [PMID: 35693880 PMCID: PMC8985770 DOI: 10.1093/pcmedi/pbz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/25/2022] Open
Abstract
This study investigated the efficiency of natural killer (NK) cell immunotherapy on non-small cell lung cancer with and without EGFR mutations in order to evaluate the response rate (RR) and progression-free survival (PFS). Among the 48 patients recruited, 24 were clinically confirmed to be EGFR mutation positive. The study group was treated with autologous NK cell immunotherapy. Comparisons of the lymphocyte number, serum tumour-related biomarkers, circulating tumour cells (CTC), Karnofsky Performance Status (KPS) and survival curves were carried out before and after NK cell immunotherapy. The safety and short-term effects were evaluated, followed by median PFS and RR assessments. The serum CEA and CA125 values were found lower in the NK cell therapy group than that of the non-NK treatment group (p < 0.05). The χ2 test showed a 75% RR of the study group A, significantly higher than that of the control group B (16.7%; p < 0.01). The RR of groups C (58.3%) and D (41.7%) were not statistically significant. The p values of the 4 groups were 0.012, 0.012, 0.166 and 1 from group A to group D, respectively. The median PFS was 9 months in EGFR mutation positive group undergoing NK cell infusion interference. By evaluating the changes in immune function, tumour biomarkers, CTC, KPS and PFS, we demonstrated that NK cell therapy had better clinical therapeutic effects on EGFR mutation-positive lung adenocarcinoma.
Collapse
Affiliation(s)
- Guodai Hong
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Xuemei Chen
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xizhuo Sun
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Meiling Zhou
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Bing Liu
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Zhu Li
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Zhendong Yu
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wenbin Gao
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Tao Liu
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| |
Collapse
|
17
|
Abstract
The lungs, a special site that is frequently challenged by tumors, pathogens and other environmental insults, are populated by large numbers of innate immune cells. Among these, natural killer (NK) cells are gaining increasing attention. Recent studies have revealed that NK cells are heterogeneous populations consisting of distinct subpopulations with diverse characteristics, some of which are determined by their local tissue microenvironment. Most current information about NK cells comes from studies of NK cells from the peripheral blood of humans and NK cells from the spleen and bone marrow of mice. However, the functions and phenotypes of lung NK cells differ from those of NK cells in other tissues. Here, we provide an overview of human and mouse lung NK cells in the context of homeostasis, pathogenic infections, asthma, chronic obstructive pulmonary disease (COPD) and lung cancer, mainly focusing on their phenotype, function, frequency, and their potential role in pathogenesis or immune defense. A comprehensive understanding of the biology of NK cells in the lungs will aid the development of NK cell-based immunotherapies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Jingjing Cong
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institue of Immunology, University of Science and Technology of China, Hefei, China
- Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institue of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Hervier B, Russick J, Cremer I, Vieillard V. NK Cells in the Human Lungs. Front Immunol 2019; 10:1263. [PMID: 31275301 PMCID: PMC6593268 DOI: 10.3389/fimmu.2019.01263] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
The lung offers one of the largest exchange surfaces of the individual with the elements of the environment. As a place of important interactions between self and non-self, the lung is richly endowed in various immune cells. As such, lung natural killer (NK) cells play major effector and immunoregulatory roles to ensure self-integrity. A better understanding of their abilities in health and diseases has been made possible over the past decade thanks to tremendous discoveries in humans and animals. By precisely distinguishing the different NK cell subsets and dissecting the ontogeny and differentiation of NK cells, both blood and tissue-resident NK populations now appear to be much more pleiotropic than previously thought. In light of these recent findings in healthy individuals, this review describes the different lung NK cell populations quantitatively, qualitatively, phenotypically, and functionally. Their identification, immunological diversity, and adaptive capacities are also addressed. For each of these elements, the impact of the mutual interactions of lung NK cells with environmental and microenvironmental factors are questioned in terms of functionality, competence, and adaptive capacities. As pulmonary diseases are major causes of morbidity and mortality worldwide, special attention is also given to the involvement of lung NK cells in various diseases, including infectious, inflammatory, autoimmune, and neoplastic lung diseases. In addition to providing a comprehensive overview of lung NK cell biology, this review also provides insight into the potential of NK cell immunotherapy and the development of targeted biologics.
Collapse
Affiliation(s)
- Baptiste Hervier
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM U1135, CNRS ERL8255, Paris, France
| | - Jules Russick
- Centre de Recherche des Cordeliers, INSERM UMR S1138, Université Pierre et Marie Curie, Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, Paris, France
| | - Isabelle Cremer
- Centre de Recherche des Cordeliers, INSERM UMR S1138, Université Pierre et Marie Curie, Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, Paris, France
| | - Vincent Vieillard
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM U1135, CNRS ERL8255, Paris, France
| |
Collapse
|
19
|
Panda SK, Colonna M. Innate Lymphoid Cells in Mucosal Immunity. Front Immunol 2019; 10:861. [PMID: 31134050 PMCID: PMC6515929 DOI: 10.3389/fimmu.2019.00861] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Innate lymphoid cells (ILCs) are innate counterparts of T cells that contribute to immune responses by secreting effector cytokines and regulating the functions of other innate and adaptive immune cells. ILCs carry out some unique functions but share some tasks with T cells. ILCs are present in lymphoid and non-lymphoid organs and are particularly abundant at the mucosal barriers, where they are exposed to allergens, commensal microbes, and pathogens. The impact of ILCs in mucosal immune responses has been extensively investigated in the gastrointestinal and respiratory tracts, as well as in the oral cavity. Here we review the state-of-the-art knowledge of ILC functions in infections, allergy and autoimmune disorders of the mucosal barriers.
Collapse
Affiliation(s)
- Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
Knudson KM, Hicks KC, Alter S, Schlom J, Gameiro SR. Mechanisms involved in IL-15 superagonist enhancement of anti-PD-L1 therapy. J Immunother Cancer 2019; 7:82. [PMID: 30898149 PMCID: PMC6429734 DOI: 10.1186/s40425-019-0551-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Immunotherapy targeting PD-1/PD-L1 fails to induce clinical responses in most patients with solid cancers. N-803, formerly ALT-803, is an IL-15 superagonist mutant and dimeric IL-15RαSushi-Fc fusion protein complex that enhances CD8+ T and NK cell expansion and function and exhibits anti-tumor efficacy in preclinical models. Previous in vitro studies have shown that IL-15 increases PD-L1 expression, a negative regulator of CD8+ T and NK cell function. Most reported preclinical studies administered N-803 intraperitoneally not subcutaneously, the current clinical route of administration. N-803 is now being evaluated clinically in combination with PD-1/PD-L1 inhibitors. However, the mechanism of action has not been fully elucidated. Here, we examined the anti-tumor efficacy and immunomodulatory effects of combining N-803 with an anti-PD-L1 antibody in preclinical models of solid carcinomas refractory to anti-PD-L1 or N-803. METHODS Subcutaneous N-803 and an anti-PD-L1 monoclonal antibody were administered as monotherapy or in combination to 4T1 triple negative breast and MC38-CEA colon tumor-bearing mice. Anti-tumor efficacy was evaluated, and a comprehensive analysis of the immune-mediated effects of each therapy was performed on the primary tumor, lung as a site of metastasis, and spleen. RESULTS We demonstrate that N-803 treatment increased PD-L1 expression on immune cells in vivo, supporting the combination of N-803 and anti-PD-L1. N-803 plus anti-PD-L1 was well-tolerated, reduced 4T1 lung metastasis and MC38-CEA tumor burden, and increased survival as compared to N-803 and anti-PD-L1 monotherapies. Efficacy of the combination therapy was dependent on both CD8+ T and NK cells and was associated with increased numbers of these activated immune cells in the lung and spleen. Most alterations to NK and CD8+ T cell phenotype and number were driven by N-803. However, the addition of anti-PD-L1 to N-803 significantly enhanced CD8+ T cell effector function versus N-803 and anti-PD-L1 monotherapies, as indicated by increased Granzyme B and IFNγ production, at the site of metastasis and in the periphery. Increased CD8+ T cell effector function correlated with higher serum IFNγ levels, without related toxicities, and enhanced anti-tumor efficacy of the N-803 plus anti-PD-L1 combination versus either monotherapy. CONCLUSIONS We provide novel insight into the mechanism of action of N-803 plus anti-PD-L1 combination and offer preclinical proof of concept supporting clinical use of N-803 in combination with checkpoint inhibitors, including for patients non- and/or minimally responsive to either monotherapy.
Collapse
Affiliation(s)
- Karin M. Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Kristin C. Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Sarah Alter
- Altor Bioscience, a NantWorks company, Miramar, FL USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
21
|
Choi SI, Lee SH, Park JY, Kim KA, Lee EJ, Lee SY, In KH. Clinical utility of a novel natural killer cell activity assay for diagnosing non-small cell lung cancer: a prospective pilot study. Onco Targets Ther 2019; 12:1661-1669. [PMID: 30881021 PMCID: PMC6398406 DOI: 10.2147/ott.s194473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Although decreased natural killer cell activity (NKA) has been observed in many solid cancers, clinical implication of NKA has been scarcely investigated in lung cancer. The objective of this study was to evaluate the potential of using NKA to support diagnosis of non-small cell lung cancer (NSCLC). Materials and methods We prospectively evaluated and compared peripheral blood NKA using a novel interferon-gamma releasing assay in healthy population (n=40), patients with benign lung disease (n=40), and those with NSCLC (n=71). We explored the correlation between NKA and clinical parameters and assessed diagnostic performance of NKA for NSCLC using receiver operating characteristic curve analysis. Results Median NKA values in healthy population, patients with benign lung disease, and those with NSCLC were 1,364.2, 1,438.2, and 406.3 pg/mL, respectively. NKA in NSCLC patients was significantly lower than that in the other two control groups (both P<0.001). At a cutoff value of NKA at 391.0 pg/mL, the area under the curve was 0.762 (95% CI: 0.685–0.838, P<0.001), with a sensitivity of 52.3%, a specificity of 91.0%, a positive predictive value of 85.3%, and a negative predictive value of 65.4% for the diagnosis of NSCLC. Multivariate analysis demonstrated that diagnosis of NSCLC is the only clinical parameter that was significantly associated with NKA (P<0.001). Conclusion This pilot study showed that patients with low NKA were more likely to have lung cancer. Further studies are warranted in order to establish the clinical utility of NKA test for diagnosing lung cancer.
Collapse
Affiliation(s)
- Sue In Choi
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Seoul, South Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Seoul, South Korea
| | - Eun Joo Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Kwang Ho In
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| |
Collapse
|
22
|
Zakiryanova GK, Kustova E, Urazalieva NT, Baimuchametov ET, Nakisbekov NN, Shurin MR. Abnormal Expression of c-Myc Oncogene in NK Cells in Patients with Cancer. Int J Mol Sci 2019; 20:E756. [PMID: 30754645 PMCID: PMC6387292 DOI: 10.3390/ijms20030756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells have received a lot of attention in recent years for the roles they play in immunity and particularly in antitumor immune responses. Although defects in NK cell functions are recognized as important mechanisms for immune evasion of malignant cells, molecular pathways regulating NK cell dysfunction and exhaustion in cancer are largely unknown. Here we tested whether the c-myc proto-oncogene, known to promote cell proliferation, growth, differentiation, and apoptosis by regulating the expression of numerous target genes, may be involved in the mechanism of NK cell abnormalities in patients with lung and gastric cancer. Analysis of c-myc mRNA and protein expression in peripheral blood NK cells, mitogen-activated protein kinase (MAPK) activity, cell cycle, and cell longevity revealed a significantly decreased expression of c-myc mRNA and protein and mitotic arrest of NK cells in different phases of cell cycle. In addition, a significant decrease of NK cell death was also detected. These data allow the suggestion that defects of NK cell-mediated tumor surveillance may be associated with disturbed c-myc expression in NK cells in cancer patients. A better understanding of the mechanisms of NK cell dysfunction in cancer will help in the NK cell-mediated therapeutic eradication of primary and metastatic cancer cells and prolong patient survival.
Collapse
Affiliation(s)
| | - Elena Kustova
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty 050060, Kazakhstan.
| | - Nataliya T Urazalieva
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty 050060, Kazakhstan.
| | | | - Narymzhan N Nakisbekov
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Michael R Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Aktaş ON, Öztürk AB, Erman B, Erus S, Tanju S, Dilege Ş. Role of natural killer cells in lung cancer. J Cancer Res Clin Oncol 2018; 144:997-1003. [PMID: 29616326 DOI: 10.1007/s00432-018-2635-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival. METHODS The relevant literature from PubMed and Medline databases is reviewed in this article. RESULTS The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival. CONCLUSIONS The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ozge Nur Aktaş
- Feinberg School of Medicine, Center for Community Health, Northwestern University, Chicago, IL, USA
| | - Ayşe Bilge Öztürk
- Department of Allergy and Immunology, Koç University Hospital, Istanbul, Turkey.
| | - Baran Erman
- Koç University, School of Medicine, Translational Medicine Research Center, Istanbul, Turkey
| | - Suat Erus
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| | - Serhan Tanju
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| | - Şükrü Dilege
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| |
Collapse
|
24
|
Catacchio I, Scattone A, Silvestris N, Mangia A. Immune Prophets of Lung Cancer: The Prognostic and Predictive Landscape of Cellular and Molecular Immune Markers. Transl Oncol 2018; 11:825-835. [PMID: 29729581 PMCID: PMC6050352 DOI: 10.1016/j.tranon.2018.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths throughout the world. The majority of patients are diagnosed with locally advanced or metastatic disease when surgery, the best curative option, is no longer feasible. Thus, the prognosis of lung cancer remains poor and heterogeneous and new biomarkers are needed. As the immune system plays a pivotal role in cancer, the study of tumor microenvironment, with regard to the immune component, may provide valuable information for a better comprehension of the pathogenesis and progression of the disease. Through a detailed and critical evaluation of the most recent publications on this topic, we provide evidences of the prognostic and predictive significance of immune markers in tumor and in peripheral blood of lung cancer patients: from the landscape of immune cells (macrophages, neutrophils, lymphocytes and natural killer) and their cytokines, to the analysis of immune-checkpoints (PD-L1 and CTLA4), up to the genetic and epigenetic regulation of the immune response (immune gene signatures and miRNA). We also argue about the lights and shadows related to immune marker use in clinical practice, emphasizing on one hand the importance of their assessment in the choice of therapeutic treatment, on the other, the difficulty in their determination and reproducibility of literature data. The following review gives a foundation and a suggestion for future studies investigating tumor immunology in lung cancer.
Collapse
Affiliation(s)
- Ivana Catacchio
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori, Bari 70124, Italy
| | - Anna Scattone
- Pathology Department, IRCCS-Istituto Tumori, Bari 70124, Italy
| | | | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori, Bari 70124, Italy.
| |
Collapse
|
25
|
Zheng X, Hu Y, Yao C. The paradoxical role of tumor-infiltrating immune cells in lung cancer. Intractable Rare Dis Res 2017; 6:234-241. [PMID: 29259850 PMCID: PMC5735275 DOI: 10.5582/irdr.2017.01059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains one of the leading causes of death worldwide, and lung cancers have often already metastasized when diagnosed. Numerous studies have noted the infiltration of immune cells in the lung cancer microenvironment, but these cells play a dualistic role, i.e. they suppress and/or promote tumor development and growth based on tumor progression and different cytokines in the microenvironment. These tumor-infiltrating immune cells create different microenvironments depending on their type and interaction. Chemokines act as a bridge in this process by recruiting immune cells to the tumor site and they regulate the phenotypes and functions of those cells. The current review summarizes current knowledge about the tumor-infiltrating immune cells in lung cancer as well as the mechanisms involved in suppression and promotion of tumor development and growth.
Collapse
Affiliation(s)
- Xiaodan Zheng
- Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, China
| | - Yuhai Hu
- Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, China
| | - Chengfang Yao
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to: Dr. Chengfang Yao, Institute of Basic Medicine, Shandong Academy of Medical Sciences, No. 18877 Jingshi Road, Ji'nan 250062, Shandong, China. E-mail:
| |
Collapse
|
26
|
Wang WN, Zhou GY, Zhang WL. NK-92 cell, another ideal carrier for chimeric antigen receptor. Immunotherapy 2017; 9:753-765. [PMID: 28771105 DOI: 10.2217/imt-2017-0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The remarkable clinical outcomes of the treatment for B-cell malignancies through the application of CD19 chimeric antigen receptor T (CAR-T) cells have made adoptive immunotherapy with genetically modified immune effector cells a hotspot in the field of antitumor. However, numerous toxicities of CAR-T cells have been identified. Thus, some studies have resorted to another cytotoxic cell, NK-92 cell, to reach for better efficacy with minimal toxicity. Preclinical studies have confirmed the safety and feasibility of the genetically modified NK-92 cells with highly specific cytotoxicity in vitro and in vivo. Therefore, it is expected that NK-92 cell becomes another ideal carrier for CAR for its unique advantages over primary NK cells, parental NK-92 cells and autologous T cells.
Collapse
Affiliation(s)
- Wan-Ning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Guang-Yu Zhou
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wen-Long Zhang
- Department of Hematology & Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
27
|
Xu L, Huang Y, Tan L, Yu W, Chen D, Lu C, He J, Wu G, Liu X, Zhang Y. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int Immunopharmacol 2015; 29:635-641. [PMID: 26428847 DOI: 10.1016/j.intimp.2015.09.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/10/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022]
Abstract
T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been shown to play an important role in mediating NK-cell function in human diseases. However, the relationship between Tim-3 expression in natural killer (NK) cells and human lung adenocarcinoma remains unclear. We therefore investigated the expression of Tim-3 in NK cells and explored the effect of Tim-3 blockade on NK cell-mediated activity in human lung adenocarcinoma. Upregulated expression of Tim-3 on CD3-CD56+ cells (P<0.05) and CD3-CD56(dim) cells (P<0.05) of patients with lung adenocarcinoma was detected by flow cytometry. Moreover, Tim-3 expression in CD3-CD56+ NK cells was higher in patients with lung adenocarcinoma with lymph node metastasis (LNM) (P<0.05) or with tumor stage T3-T4 (P<0.05). Tim-3 expression in CD56(dim) NK-cell subset was higher in patients with tumor size ≥3cm (P<0.05), or LNM (P<0.05) or with tumor stage T3-T4 (P<0.05). Further analysis showed that higher expressions of Tim-3 on both CD3-CD56+ NK cells and CD56(dim) NK-cell subset were independently correlated with shorter overall survival of patients with lung adenocarcinoma (log-rank test, P=0.0418, 0.0406, respectively). Importantly, blockade of Tim-3 signaling with anti-Tim-3 antibodies resulted in the increased cytotoxicity and IFN-γ production of peripheral NK cells from patients with lung adenocarcinoma. Our data indicate that Tim-3 expression in NK cells can function as a prognostic biomarker in human lung adenocarcinoma and support that Tim-3 could be a new target for an immunotherapeutic strategy.
Collapse
Affiliation(s)
- Liyun Xu
- Cell and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China
| | - Yanyan Huang
- Cell and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China
| | - Linlin Tan
- Cell and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China
| | - Wei Yu
- Cell and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China
| | - Dongdong Chen
- Cell and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China
| | - ChangChang Lu
- Cell and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China
| | - Jianying He
- Cell and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China
| | - Guoqing Wu
- Department of Oncology, Cancer Biotherapy Center, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Xiaoguang Liu
- Cell and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China.
| | - Yongkui Zhang
- Department of Cardio-Thoracic Surgery, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhejiang 316000, China.
| |
Collapse
|
28
|
Deng Z, Zhen J, Zhu B, Zhang G, Yu Q, Wang D, Xu Y, He L, Lu L. Allelic diversity of KIR3DL1/3DS1 in a southern Chinese population. Hum Immunol 2015; 76:663-6. [PMID: 26416088 DOI: 10.1016/j.humimm.2015.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
The inhibitory KIR3DL1 and the activating KIR3DS1 segregate as alleles of the same locus. KIR3DL1 is highly diversified at the allele level and KIR3DL1 alleles exhibit varied levels of expression and ligand binding affinity resulting in varied degrees of NK cell inhibition. Previous studies have shown that the KIR3DL1/3DS1 polymorphism associated with viral infection, cancer and transplantation. However, little is known about the population distribution of KIR3DL1/3DS1 alleles in Chinese. The present study examined allelic diversity of KIR3DL1/3DS1 in a southern Chinese population (N=306) using PCR-SSP and sequencing based typing. The presence of KIR3DL1 and KIR3DS1 were detected in 97.1% and 34.0% of the tested individuals respectively. A total of 10 KIR3DL1 alleles (including 2 novel ones) and 6 KIR3DS1 alleles (including 5 novel ones) were identified. Common KIR3DL1 alleles (>10%) were KIR3DL1*01502 (74.8%), KIR3DL1*00501 (23.9%) and KIR3DL1*00701 (15.7%). KIR3DS1*01301 was the predominant KIR3DS1 allele with other KIR3DS1 alleles only sporadically observed. The knowledge of the allelic polymorphism of KIR3DL1/3DS1 may help to better understand the role played by KIR3DL1/3DS1 in associated diseases and clinical transplantation in southern Chinese.
Collapse
Affiliation(s)
- Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Jianxin Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Bofeng Zhu
- College of Medicine, Xi'An Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Guobing Zhang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Qiong Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Daming Wang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Yunping Xu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Liumei He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Liang Lu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| |
Collapse
|
29
|
Natural killer cell receptors: alterations and therapeutic targeting in malignancies. Immunol Res 2015; 64:25-35. [DOI: 10.1007/s12026-015-8695-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Mirjačić Martinović K, Babović N, Džodić R, Jurišić V, Matković S, Konjević G. Favorable in vitro effects of combined IL-12 and IL-18 treatment on NK cell cytotoxicity and CD25 receptor expression in metastatic melanoma patients. J Transl Med 2015; 13:120. [PMID: 25889680 PMCID: PMC4421987 DOI: 10.1186/s12967-015-0479-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/30/2015] [Indexed: 11/26/2022] Open
Abstract
Background As IL-12 and IL-18 have important immunostimulatory role the aim of this study was to investigate their in vitro effects on functional and receptor characteristics of NK cells and their subsets in healthy controls (HC) and metastatic melanoma patients (MM). Methods Peripheral blood mononuclear cells (PBMC) of HC and MM were stimulated with culture medium alone, medium supplemented with IL-12 (10 ng/ml), IL-18 (100 ng/ml) and their combination. NK cell activity was determined using radioactive cytotoxicity assay, while perforin, CD107a and pSTAT-4 expression, IFN-γ production and the expression of NKG2D, DNAM-1, CD161, CD158a/b, CD25, IL-12R beta 1/2 receptors on CD3−CD56+ NK cells and their CD3−CD56dim+ and CD3−CD56bright+ subsets were analyzed by flow cytometry. Cytokine induced level of DAP10 in PBMC was analyzed by reverse transcription polymerase chain reaction. Results IL-12 alone or in combination with IL-18 significantly induced NK cell activity and CD107a degranulation marker expression in MM and HC, while IL-18 alone did not have any effect in patients. The combination of IL-12 and IL-18 significantly increased mean fluorescence intensity (MFI) of IFN-γ in all NK cell subsets in HC and only in the bright subset in MM. MM that belong to M1c group with metastasis in liver and increased LDH serum values had significantly lower increase in NK cell cytotoxicity after combined IL-12 and IL-18 treatment compared to the patients in M1a and M1b categories. These results could be explained by decreased IL-12R expression and lower increase in pSTAT-4 and perforin expression in NK cells of M1c patients after IL-12 and combined IL-12 and IL-18 treatment. IL-18 alone significantly decreased NKG2D receptor expression and level of DAP10 signaling molecule in MM, while combined IL-12 and IL-18 increased the expression of CD25 on all NK cell subsets in HC and MM. Additionally, MM that belong to M1a + M1b group had significantly higher increase in CD25 receptor expression compared to the patients in M1c group. Conclusions The novel data obtained in this study support the use of IL-12 and IL-18 in combination for developing new therapeutic strategies for metastatic melanoma especially for patients with better survival rate and prognosis.
Collapse
Affiliation(s)
- Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Nada Babović
- Department of Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Radan Džodić
- Surgical Oncology Clinic, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia. .,School of Medicine, University of Belgrade, Dr Subotića 8, 11000, Beograd, Serbia.
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, P.BOX 124, 34000, Kragujevac, Serbia.
| | - Suzana Matković
- Department of Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Gordana Konjević
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia. .,School of Medicine, University of Belgrade, Dr Subotića 8, 11000, Beograd, Serbia.
| |
Collapse
|
31
|
Patel MA, Kim JE, Ruzevick J, Lim M. Present and future of immune checkpoint blockade: Monotherapy to adjuvant approaches. World J Immunol 2015; 5:1-15. [DOI: 10.5411/wji.v5.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
Immune regulation of aggressive tumor growth is often outpaced by tumor up-regulation of ligands that inhibit effector immune responses through the activation of immune checkpoints. A few of such checkpoints include programmed death-1 (PD-1), cytotoxic T lymphocyte associated antigen-4 (CTLA-4), lymphocyte activation gene-3, T-cell immunoglobulin and mucin protein-3, Glucocorticoid-induced TNFR family-related receptor (GITR), and killer cell immunoglobulin like receptor. With the exception of GITR, after binding to their respective ligands these checkpoints induce down-modulation of immune responses to prevent autoimmunity. However, such immune mechanisms are co-opted by tumors to allow rapid tumor cell proliferation. Pre-clinical studies in antibody blockade of PD-1 and CTLA-4 have led to promising augmentation of effector immune responses in murine tumor models, and human antibodies against PD-1 and CTLA-4 alone or in combination have demonstrated tumor regression in clinical trials. The development of immune checkpoint blockade as a potential future immunotherapy has led to increasing interest in combining treatment modalities. Combination checkpoint blockade with chemotherapy and radiation therapy has shown synergistic effects in pre-clinical and clinical studies, and combination checkpoint blockade with bacterial vaccine vectors have produced increased effector immune responses in pre-clinical models. The future of immune checkpoint blockade may be as a powerful adjuvant alongside the current standard of care.
Collapse
|
32
|
Chen C, Chen Z, Chen D, Zhang B, Wang Z, Le H. Suppressive effects of gemcitabine plus cisplatin chemotherapy on regulatory T cells in nonsmall-cell lung cancer. J Int Med Res 2015; 43:180-7. [PMID: 25659373 DOI: 10.1177/0300060514561504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To investigate the effect of gemcitabine plus cisplatin chemotherapy on the percentage of CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) regulatory T cells (Tregs) in the peripheral blood of patients with nonsmall-cell lung cancer (NSCLC). METHODS Peripheral blood was taken from patients with NCSLC (before and after chemotherapy) and control subjects with nonmalignant disease. The percentages of CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) Tregs were analysed using flow cytometry. RESULTS Patients (n = 40) had significantly higher CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) percentages than control subjects (n = 24). CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) percentages increased with tumour progression, fell significantly after chemotherapy, but remained significantly higher than control values. CONCLUSIONS CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) Treg percentages were higher in patients with NSCLC than control subjects, and increased in line with tumour progression. Percentages of CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) Tregs were significantly reduced following gemcitabine plus cisplatin chemotherapy.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Zhijun Chen
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Dongdong Chen
- Joint Laboratory of Immunogenomics, Zhoushan Hospital, Zhoushan, China
| | - Binjie Zhang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Zhaoye Wang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Hanbo Le
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| |
Collapse
|
33
|
Abstract
Advances in our understanding of the complex mechanisms of immune regulation and the interactions between tumor cells and the immune system have provided a solid foundation for advancing cancer immunotherapy and have inspired novel therapeutic strategies. Optimizing the effectiveness of immunotherapy will require targeting the antitumor immune response at multiple levels, and this may be achieved through synergistic combinations. Examples include combining two cancer vaccines to achieve a "prime and boost" effect, combining two immune checkpoint inhibitors, combining immunotherapy with targeted agents, or combining immunotherapy with low-dose chemotherapy or radiation. Immune checkpoint inhibitors, such as ipilimumab and nivolumab, will likely play an important role in the future of immunotherapy. The ability to block key pathways by which tumor cells seek to evade or suppress the immune response is critical to realizing the potential of cancer immunotherapy. Other exciting advances include recombinant oncolytic viruses and adoptive transfer of chimeric antigen receptor T cells. However, many challenges remain if durable tumor eradication with minimal toxicity is to be achieved in a broader population of cancer patients.
Collapse
|
34
|
Association of killer cell immunoglobulin-like receptor gene 2DL1 and its HLA-C2 ligand with family history of cancer in oral squamous cell carcinoma. Immunogenetics 2014; 66:439-48. [DOI: 10.1007/s00251-014-0778-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
35
|
Affiliation(s)
- Benjamin C. Creelan
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
36
|
Zhen J, Wang D, He L, Zou H, Xu Y, Gao S, Yang B, Deng Z. Genetic profile of KIR and HLA in southern Chinese Han population. Hum Immunol 2013; 75:59-64. [PMID: 24055695 DOI: 10.1016/j.humimm.2013.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 12/26/2022]
Abstract
KIR and their HLA ligands are encoded by two of the most diverse gene families in the human genome. The function of KIR on the NK cell is highly dependent on the normal expression of class I HLA on the target cell. Previous population studies in southern Chinese have been focused on the KIR framework genes and genotypes but little is known about the compound profiles of KIR/HLA. The present study examined 503 unrelated individuals from southern Chinese Han population for the polymorphism of KIR and class I HLA genes. All 16 KIR genes were detected in the study population and the four framework genes KIR3DL2, 3DL3, 3DP1, and 2DL4 were present in all individuals. Thirty unique KIR gene profiles were found reflecting a rather limited number of KIR haplotypes in this population. KIRAA1 was the most common profile observed in 54.7% of the samples. Among the AA1 individuals, 15.6% were homozygous for the deleted KIR2DS4. Haplotype A (74.8%) was more common than haplotype B (25.2%). HLA-C1 was a much more common ligand for 2D KIRs than C2. Bw4-80I, Bw4-80T, and the Bw4-bearing HLA-A alleles were detected at similar frequencies. The matched KIR+HLA pairs 2DL2/3+C1 (98.1%), 3DL1+Bw4 (73.3%), 3DL2+A3/11 (60.0%) were the most common ones whereas 3DS1+Bw4-80I was the least common (9.4%). A total of 193 unique compound profiles of KIR-HLA were identified in 480 informative individuals, 130 of the profiles being detected only once. The study provided a comprehensive analysis of the KIR/HLA profiles in southern Chinese in regards of the presence/absence of KIR genes, HLA ligands, matched KIR+HLA pairs, and KIR/HLA compound profiles. The results could help to better understand the role played by KIR/HLA interaction in associated diseases and clinical transplantation in southern Chinese.
Collapse
Affiliation(s)
- Jianxin Zhen
- Southern Medical University, Guangzhou, Guangdong 510515, China; Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China
| | - Daming Wang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China
| | - Liumei He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China
| | - Hongyan Zou
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China
| | - Yunping Xu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China
| | - Suqing Gao
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China
| | - Baocheng Yang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China
| | - Zhihui Deng
- Southern Medical University, Guangzhou, Guangdong 510515, China; Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| |
Collapse
|
37
|
Brenu EW, Hardcastle SL, Atkinson GM, van Driel ML, Kreijkamp-Kaspers S, Ashton KJ, Staines DR, Marshall-Gradisnik SM. Natural killer cells in patients with severe chronic fatigue syndrome. AUTOIMMUNITY HIGHLIGHTS 2013; 4:69-80. [PMID: 26000145 PMCID: PMC4389023 DOI: 10.1007/s13317-013-0051-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/06/2013] [Indexed: 02/06/2023]
Abstract
Maintenance of health and physiological homeostasis is a synergistic process involving tight regulation of proteins, transcription factors and other molecular processes. The immune system consists of innate and adaptive immune cells that are required to sustain immunity. The presence of pathogens and tumour cells activates innate immune cells, in particular Natural Killer (NK) cells. Stochastic expression of NK receptors activates either inhibitory or activating signals and results in cytokine production and activation of pathways that result in apoptosis of target cells. Thus, NK cells are a necessary component of the immunological process and aberrations in their functional processes, including equivocal levels of NK cells and cytotoxic activity pre-empts recurrent viral infections, autoimmune diseases and altered inflammatory responses. NK cells are implicated in a number of diseases including chronic fatigue syndrome (CFS). The purpose of this review is to highlight the different profiles of NK cells reported in CFS patients and to determine the extent of NK immune dysfunction in subtypes of CFS patients based on severity in symptoms.
Collapse
Affiliation(s)
- E. W. Brenu
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, QLD Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
- Immunology Research Group, Centre for Medicine and Oral Health, Griffith University, GH1, Room 7.59, Southport, QLD 4215 Australia
| | - S. L. Hardcastle
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, QLD Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
| | - G. M. Atkinson
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, QLD Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
| | - M. L. van Driel
- Queensland Health, Gold Coast Public Health Unit, Robina, Gold Coast, QLD Australia
| | | | - K. J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD Australia
| | - D. R. Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
- Queensland Health, Gold Coast Public Health Unit, Robina, Gold Coast, QLD Australia
| | - S. M. Marshall-Gradisnik
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, QLD Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
38
|
Foulds GA, Radons J, Kreuzer M, Multhoff G, Pockley AG. Influence of tumors on protective anti-tumor immunity and the effects of irradiation. Front Oncol 2013; 3:14. [PMID: 23378947 PMCID: PMC3561630 DOI: 10.3389/fonc.2013.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer.
Collapse
Affiliation(s)
- Gemma A Foulds
- Department of Oncology, The Medical School, The University of Sheffield Sheffield, UK ; Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | | | | | | | | |
Collapse
|
39
|
La Nasa G, Caocci G, Littera R, Atzeni S, Vacca A, Mulas O, Langiu M, Greco M, Orrù S, Orrù N, Floris A, Carcassi C. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol 2013; 41:424-31. [PMID: 23380384 DOI: 10.1016/j.exphem.2013.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Abstract
Several recent reports suggest a possible role for killer immunoglobulin-like receptors (KIR) in the onset of chronic myeloid leukemia (CML) and response to therapy with tyrosine kinase inhibitors (TKIs). To explore this hypothesis, we studied KIRs and their human leukocyte antigen class I ligands in 59 consecutive patients with chronic-phase CML (mean age, 53 years; range, 23-81 years) and a group of 121 healthy control participants belonging to the same ethnic group as the patients. The 2-year cumulative incidence of complete molecular response, obtained after a median of 27 months (range, 4-52 months), was 51.2%. An increased frequency of the activating receptor KIR2DS1 (pm = 0.05) and a reduced frequency of the KIR-ligand combination KIR2DS2/2DL2 absent/C1 present (pm = 0.001) were significantly associated with CML. Moreover, KIR repertoires in patients appeared to influence response to TKI therapy. Homozygosity for KIR haplotype A (pm = 0.01), a decreased frequency of the inhibitory KIR gene KIR2DL2 (pm = 0.02), and low numbers of inhibitory KIR genes (pm = 0.05) were all significantly associated with achievement of complete molecular remission. These data suggest that a decrease in properly stimulated and activated NK cells might contribute to the occurrence of CML and indicate homozygosity for KIR haplotype A as a promising immunogenetic marker of complete molecular response that could help clinicians decide whether to withdraw treatment in patients with CML.
Collapse
Affiliation(s)
- Giorgio La Nasa
- Bone Marrow Transplant Center, R. Binaghi Hospital - ASL 8, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hesker PR, Krupnick AS. The role of natural killer cells in pulmonary immunosurveillance. Front Biosci (Schol Ed) 2013; 5:575-587. [PMID: 23277070 PMCID: PMC4413461 DOI: 10.2741/s391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Natural killer (NK) cells were originally identified as lymphocytes capable of killing cancer cells without prior sensitization (1). Further characterization of these cells in both humans and rodent models has expanded their role towards a broad-based immunosurveillance of diseased and healthy peripheral tissues. Among peripheral organs, the lung contains the largest percentage of NK cells. Accordingly, NK cells are implicated in many immunological responses within the lung, including innate effector functions as well as initiation of the adaptive immune response. In this article, we review the characteristics of NK cells, current models of NK maturation and cell activation, migration of NKs to the lung, and effector functions of NKs in cancer and infection in the airways. Specific emphasis is placed on the functional significance of NKs in cancer immunosurveillance. Therapeutic modulation of NK cells appears to be a challenging but promising approach to limit cancer, inflammation, and infection in the lung.
Collapse
Affiliation(s)
- Pamela Rose Hesker
- Department of Surgery and The Alvin Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., St Louis, MO
| | - Alexander Sasha Krupnick
- Department of Surgery and The Alvin Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., St Louis, MO
| |
Collapse
|
41
|
Heuvers ME, Aerts JG, Cornelissen R, Groen H, Hoogsteden HC, Hegmans JP. Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment. BMC Cancer 2012; 12:580. [PMID: 23217146 PMCID: PMC3533940 DOI: 10.1186/1471-2407-12-580] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/15/2012] [Indexed: 12/16/2022] Open
Abstract
Cancer research has devoted most of its energy over the past decades on unraveling the control mechanisms within tumor cells that govern its behavior. From this we know that the onset of cancer is the result of cumulative genetic mutations and epigenetic alterations in tumor cells leading to an unregulated cell cycle, unlimited replicative potential and the possibility for tissue invasion and metastasis. Until recently it was often thought that tumors are more or less undetected or tolerated by the patient’s immune system causing the neoplastic cells to divide and spread without resistance. However, it is without any doubt that the tumor environment contains a wide variety of recruited host immune cells. These tumor infiltrating immune cells influence anti-tumor responses in opposing ways and emerges as a critical regulator of tumor growth. Here we provide a summary of the relevant immunological cell types and their complex and dynamic roles within an established tumor microenvironment. For this, we focus on both the systemic compartment as well as the local presence within the tumor microenvironment of late-stage non-small cell lung cancer (NSCLC), admitting that this multifaceted cellular composition will be different from earlier stages of the disease, between NSCLC patients. Understanding the paradoxical role that the immune system plays in cancer and increasing options for their modulation may alter the odds in favor of a more effective anti-tumor immune response. We predict that the future standard of care of lung cancer will involve patient-tailor-made combination therapies that associate (traditional) chemotherapeutic drugs and biologicals with immune modulating agents and in this way complement the therapeutic armamentarium for this disease.
Collapse
Affiliation(s)
- Marlies E Heuvers
- Department of Pulmonary Medicine, Erasmus Medical Center, Postbox 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Dasanu CA, Sethi N, Ahmed N. Immune alterations and emerging immunotherapeutic approaches in lung cancer. Expert Opin Biol Ther 2012; 12:923-37. [PMID: 22559147 DOI: 10.1517/14712598.2012.685715] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Subjects with lung cancer were shown to present a variety of immune abnormalities including cellular immune dysfunction, cytokine alterations, and antigen presentation defects. As discouraging results are commonly seen with the existing therapies in lung cancer, more innovative treatment strategies are needed. AREAS COVERED The authors review comprehensively the immune abnormalities in individuals with lung cancer, describe the lung cancer immunotherapy candidates that are most advanced in their clinical development, and summarize recent data from clinical trials of these agents. EXPERT OPINION Enhancing the immune system represents an appealing avenue for lung cancer therapy. Several immunomodulating agents have activity in this regard including ipilimumab, a monoclonal antibody against the CTLA-4, and talactoferrin, a dendritic cell activator. In addition, a significant activity was shown with belagenpumatucel-L, a whole-cell-based vaccine that blocks the action of TGF-β2. Other promising vaccines are protein-specific vaccines against tumor antigens such as MAGE-A3, EGF, and MUC1. Although some of these immunotherapies may have lackluster performance as single agents in advanced disease, more impressive results are seen in combination with chemotherapy agents. Given their proven activity in lung cancer, these immunotherapies may soon become a powerful addition to the oncologist's toolbox.
Collapse
Affiliation(s)
- Constantin A Dasanu
- St. Francis Hospital and Medical Center, Department of Hematology-Oncology, Medical Oncology and Blood Disorders, Gothic Park, 43 Woodland Street, Suite G-80, Hartford, CT 06105, USA.
| | | | | |
Collapse
|
43
|
Al Omar SY, Marshall E, Middleton D, Christmas SE. Increased numbers but functional defects of CD56+CD3+ cells in lung cancer. Int Immunol 2012; 24:409-15. [PMID: 22366043 DOI: 10.1093/intimm/dxr122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD56+ T cells were studied in samples of peripheral blood from small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) patients compared with healthy controls. Relative numbers of CD56+CD3+ cells were increased in NSCLC (P = 0.001) and SCLC (P = 0.002) compared with normal subjects but their ability to respond to activation by up-regulating CD25 or producing IFN-γ were both significantly impaired. Expression of the killer-immunoglobulin-like receptor CD158a was significantly lower on CD56+CD3+ cells in SCLC than controls and also in early stage compared with late stage NSCLC patients. Mean levels of CD158e were higher in NSCLC patients than controls. CD158e levels on CD56+CD3+ cells were increased in the presence of its ligand HLA-Bw4 compared with controls. Although the precise role of CD56+CD3+ cells is not clear, they appear to be functionally impaired in lung cancer, which may have implications for a reduction of direct or indirect anti-tumour responses.
Collapse
Affiliation(s)
- Suliman Y Al Omar
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, UK
| | | | | | | |
Collapse
|
44
|
|