1
|
Metabolomics: State-of-the-Art Technologies and Applications on Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:257-276. [PMID: 29951824 DOI: 10.1007/978-981-13-0529-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomics is one of the latest "omics" technology concerned with the high-throughput identification and quantification of metabolites, the final products of cellular processes. The revealed data provide an instantaneous snapshot of an organism's metabolic pathways, which can be used to explain its phenotype or physiology. On the other hand, Drosophila has shown its power in studying metabolism and related diseases. At this stage, we have the state-of-the-art knowledge in place: a potential candidate to study cellular metabolism (Drosophila melanogaster) and a powerful methodology for metabolic network decipherer (metabolomics). Yet missing is advanced metabolomics technologies like isotope-assisted metabolomics optimized for Drosophila. In this chapter, we will discuss on the current status and future perspectives in technologies and applications of Drosophila metabolomics.
Collapse
|
2
|
Guo Y, Liu CX, Zhang LS, Wang MQ, Chen HY. Sterol content in the artificial diet of Mythimna separata affects the metabolomics of Arma chinensis (Fallou) as determined by proton nuclear magnetic resonance spectroscopy. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21426. [PMID: 29024237 DOI: 10.1002/arch.21426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insects cannot synthesize sterols and must obtain them from plants. Therefore, reducing plant sterol content or changing sterol type might be an effective pest control strategy. However, the impacts of these changes on pests' natural predators remain unknown. Here, we fed artificial diets with reduced sterol content to Mythimna separata (Walker) (Lepidoptera: Noctuidae) and investigated the effects on its natural predator, Arma chinensis (Fallou) (Hemiptera: Pentatomidae). Reduced sterol content in M. separata (MS1, MS2, and MS5) was achieved by feeding them artificial diets prepared from a feed base subjected to one, two, or five cycles of sterol extractions, respectively. The content of most substances increased in A. chinensis (AC) groups feeding on MS2 and MS5. The content of eight substances (alanine, betaine, dimethylamine, fumarate, glutamine, glycine, methylamine, and sarcosine) differed significantly between the control (AC0) and treated (AC1, AC2, and AC5) groups. Metabolic profiling revealed that only AC5 was significantly distinct from AC0; the major substances contributing to this difference were maltose, glucose, tyrosine, proline, O-phosphocholine, glutamine, allantoin, lysine, valine, and glutamate. Furthermore, only two metabolic pathways, that is, nicotinate and nicotinamide metabolism and ubiquinone and other terpenoid-quinone biosynthesis, differed significantly between AC1 and AC5 and the control, albeit with an impact value of zero. Thus, the sterol content in the artificial diet fed to M. separata only minimally affected the metabolites and metabolic pathways of its predator A. chinensis, suggesting that A. chinensis has good metabolic self-regulation with high resistance to sterol content changes.
Collapse
Affiliation(s)
- Yi Guo
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Sino-American Biological Control Laboratory (Sino-ABCL), USDA-ARS, Beijing, P. R. China
| | - Chen-Xi Liu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Sino-American Biological Control Laboratory (Sino-ABCL), USDA-ARS, Beijing, P. R. China
| | - Li-Sheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Sino-American Biological Control Laboratory (Sino-ABCL), USDA-ARS, Beijing, P. R. China
| | - Meng-Qing Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Sino-American Biological Control Laboratory (Sino-ABCL), USDA-ARS, Beijing, P. R. China
| | - Hong-Yin Chen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Sino-American Biological Control Laboratory (Sino-ABCL), USDA-ARS, Beijing, P. R. China
| |
Collapse
|
3
|
Cox JE, Thummel CS, Tennessen JM. Metabolomic Studies in Drosophila. Genetics 2017; 206:1169-1185. [PMID: 28684601 PMCID: PMC5500124 DOI: 10.1534/genetics.117.200014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila, often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research.
Collapse
Affiliation(s)
- James E Cox
- Department of Biochemistry and
- The Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
4
|
Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors. Sci Rep 2016; 6:32460. [PMID: 27581362 PMCID: PMC5007527 DOI: 10.1038/srep32460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 11/28/2022] Open
Abstract
Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.
Collapse
|
5
|
Snart CJ, Hardy IC, Barrett DA. Entometabolomics: applications of modern analytical techniques to insect studies. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2015; 155:1-17. [PMID: 27478203 PMCID: PMC4949644 DOI: 10.1111/eea.12281] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 06/01/2023]
Abstract
Metabolomic analyses can reveal associations between an organism's metabolome and further aspects of its phenotypic state, an attractive prospect for many life-sciences researchers. The metabolomic approach has been employed in some, but not many, insect study systems, starting in 1990 with the evaluation of the metabolic effects of parasitism on moth larvae. Metabolomics has now been applied to a variety of aspects of insect biology, including behaviour, infection, temperature stress responses, CO 2 sedation, and bacteria-insect symbiosis. From a technical and reporting standpoint, these studies have adopted a range of approaches utilising established experimental methodologies. Here, we review current literature and evaluate the metabolomic approaches typically utilised by entomologists. We suggest that improvements can be made in several areas, including sampling procedures, the reduction in sampling and equipment variation, the use of sample extracts, statistical analyses, confirmation, and metabolite identification. Overall, it is clear that metabolomics can identify correlations between phenotypic states and underlying cellular metabolism that previous, more targeted, approaches are incapable of measuring. The unique combination of untargeted global analyses with high-resolution quantitative analyses results in a tool with great potential for future entomological investigations.
Collapse
Affiliation(s)
- Charles J.P. Snart
- Centre for Analytical BioscienceSchool of PharmacyUniversity of NottinghamUniversity Park CampusNottinghamNG7 2RDUK
- School of BiosciencesUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Ian C.W. Hardy
- School of BiosciencesUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - David A. Barrett
- Centre for Analytical BioscienceSchool of PharmacyUniversity of NottinghamUniversity Park CampusNottinghamNG7 2RDUK
| |
Collapse
|
6
|
de la Paz Celorio-Mancera M, Wheat CW, Vogel H, Söderlind L, Janz N, Nylin S. Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by RNA-Seq. Mol Ecol 2013; 22:4884-95. [DOI: 10.1111/mec.12440] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/15/2022]
Affiliation(s)
| | - Christopher W. Wheat
- Department of Zoology Ecology; Stockholm University; Svante Arrheniusväg 18 B, 106 91 Stockholm Sweden
| | - Heiko Vogel
- Department of Entomology; Max Planck Institute for Chemical Ecology; Beutenberg Campus Hans-Knöll Straβe 8 07745 Jena Germany
| | - Lina Söderlind
- Department of Zoology Ecology; Stockholm University; Svante Arrheniusväg 18 B, 106 91 Stockholm Sweden
| | - Niklas Janz
- Department of Zoology Ecology; Stockholm University; Svante Arrheniusväg 18 B, 106 91 Stockholm Sweden
| | - Sören Nylin
- Department of Zoology Ecology; Stockholm University; Svante Arrheniusväg 18 B, 106 91 Stockholm Sweden
| |
Collapse
|