1
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Wang YJ, Wang HL, Wang XW, Liu SS. Evolutionary Patterns of Sex-Biased Genes in Three Species of Haplodiploid Insects. INSECTS 2020; 11:insects11060326. [PMID: 32466547 PMCID: PMC7349267 DOI: 10.3390/insects11060326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Females and males often differ obviously in morphology and behavior, and the differences between sexes are the result of natural selection and/or sexual selection. To a great extent, the differences between the two sexes are the result of differential gene expression. In haplodiploid insects, this phenomenon is obvious, since males develop from unfertilized zygotes and females develop from fertilized zygotes. Whiteflies of the Bemisia tabaci species complex are typical haplodiploid insects, and some species of this complex are important pests of many crops worldwide. Here, we report the transcriptome profiles of males and females in three species of this whitefly complex. Between-species comparisons revealed that non-sex-biased genes display higher variation than male-biased or female-biased genes. Sex-biased genes evolve at a slow rate in protein coding sequences and gene expression and have a pattern of evolution that differs from those of social haplodiploid insects and diploid animals. Genes with high evolutionary rates are more related to non-sex-biased traits-such as nutrition, immune system, and detoxification-than to sex-biased traits, indicating that the evolution of protein coding sequences and gene expression has been mainly driven by non-sex-biased traits.
Collapse
|
3
|
Liu PC, Tian S, Hao DJ. Sexual Transcription Differences in Brachymeria lasus (Hymenoptera: Chalcididae), a Pupal Parasitoid Species of Lymantria dispar (Lepidoptera: Lymantriidae). Front Genet 2019; 10:172. [PMID: 30891067 PMCID: PMC6411638 DOI: 10.3389/fgene.2019.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Sex differences in gene expression have been extensively documented, but little is known about these differences in parasitoid species that are widely applied to control pests. Brachymeria lasus is a solitary parasitoid species and has been evaluated as a potential candidate for release to control Lymantria dispar. In this study, gender differences in B. lasus were investigated using Illumina-based transcriptomic analysis. The resulting 37,453 unigene annotations provided a large amount of useful data for molecular studies of B. lasus. A total of 1416 differentially expressed genes were identified between females and males, and the majority of the sex-biased genes were female biased. Gene Ontology (GO) and Pathway enrichment analyses showed that (1) the functional categories DNA replication, fatty acid biosynthesis, and metabolism were enhanced in females and that (2) the only pathway enriched in males was phototransduction, while the GO subcategories enriched in males were those involved in membrane and ion transport. In addition, thirteen genes involving transient receptor potential (TRP) channels were annotated in B. lasus. We further explored and discussed the functions of TRPs in sensory signaling of light and temperature. In general, this study provides new molecular insights into the biological and sexually dimorphic traits of parasitoids, which may improve the application of these insects to the biological control of pests.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- The College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shuo Tian
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- The College of Forestry, Nanjing Forestry University, Nanjing, China
| | - De-Jun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- The College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
|
5
|
Dhaygude K, Trontti K, Paviala J, Morandin C, Wheat C, Sundström L, Helanterä H. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta. PeerJ 2017; 5:e3998. [PMID: 29177112 PMCID: PMC5701548 DOI: 10.7717/peerj.3998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Department of Biosciences, Neurogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jenni Paviala
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Christopher Wheat
- Department of Zoology Ecology, Stockholm University, Stockholm, Sweden
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
6
|
Lucas ER, Romiguier J, Keller L. Gene expression is more strongly influenced by age than caste in the ant Lasius niger. Mol Ecol 2017; 26:5058-5073. [DOI: 10.1111/mec.14256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Eric R. Lucas
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
- Department of Vector Biology; Liverpool School of Tropical Medicine; Liverpool UK
| | - Jonathan Romiguier
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
| |
Collapse
|
7
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Transcriptomic dissection of sexual differences in Bemisia tabaci, an invasive agricultural pest worldwide. Sci Rep 2014; 4:4088. [PMID: 24526031 PMCID: PMC3924218 DOI: 10.1038/srep04088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/03/2014] [Indexed: 11/08/2022] Open
Abstract
Sex difference involving chromosomes and gene expression has been extensively documented. In this study, the gender difference in the sweetpotato whitefly Bemisia tabaci was investigated using Illumina-based transcriptomic analysis. Gender-based RNAseq data produced 27 Gb reads, and subsequent de novo assembly generated 93,948 transcripts with a N50 of 1,853 bp. A total of 1,351 differentially expressed genes were identified between male and female B. tabaci, and majority of them were female-biased. Pathway and GO enrichment experiments exhibited a gender-specific expression, including enriched translation in females, and enhanced structural constituent of cuticle in male whiteflies. In addition, a putative transformer2 gene (tra2) was cloned, and the structural feature and expression profile of tra2 were investigated. Sexually dimorphic transcriptome is an uncharted territory for the agricultural insect pests. Molecular understanding of sex determination in B. tabaci, an emerging invasive insect pest worldwide, will provide potential molecular target(s) for genetic pest control alternatives.
Collapse
|
9
|
Hunt BG, Ometto L, Keller L, Goodisman MAD. Evolution at two levels in fire ants: the relationship between patterns of gene expression and protein sequence evolution. Mol Biol Evol 2012; 30:263-71. [PMID: 23051842 DOI: 10.1093/molbev/mss234] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Variation in protein sequence and gene expression each contribute to phenotypic diversity, and may be subject to similar selective pressures. Eusocial insects are particularly useful for investigating the evolutionary link between protein sequence and condition-dependent patterns of gene expression because gene expression plays a central role in determining differences between eusocial insect sexes and castes. We investigated the relationship between protein coding sequence evolution and gene expression patterns in the fire ants Solenopsis invicta, S. richteri, and their hybrids to gain greater insight into how selection jointly operates on gene expression and coding sequence. We found that genes with high expression variability within castes and sexes were frequently differentially expressed between castes and sexes, as well as between species and hybrids. These results indicate that genes showing high variation in expression in one context also tend to show high variation in expression in other contexts. Our analyses further revealed that variation in both intra- and interspecific gene expression was positively associated with rate of protein sequence evolution in Solenopsis. This suggests that selective constraints on a gene operate both at the level of protein sequence and at the level of gene expression regulation. Overall, our study provides one of the strongest demonstrations that selective constraints mediate both protein sequence evolution and gene expression variability across different biological contexts and timescales.
Collapse
Affiliation(s)
- Brendan G Hunt
- School of Biology, Georgia Institute of Technology, USA.
| | | | | | | |
Collapse
|
10
|
OMETTO LINO, ROSS KENNETHG, SHOEMAKER D, KELLER LAURENT. Disruption of gene expression in hybrids of the fire antsSolenopsis invictaandSolenopsis richteri. Mol Ecol 2012; 21:2488-501. [DOI: 10.1111/j.1365-294x.2012.05544.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
|
12
|
Ometto L, Shoemaker D, Ross KG, Keller L. Evolution of Gene Expression in Fire Ants: The Effects of Developmental Stage, Caste, and Species. Mol Biol Evol 2010; 28:1381-92. [DOI: 10.1093/molbev/msq322] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|