1
|
Li J, Jia S, Song Y, Xu W, Lin J. Ginkgolide B can alleviate spinal cord glymphatic system dysfunction and provide neuroprotection in painful diabetic neuropathy rats by inhibiting matrix metalloproteinase-9. Neuropharmacology 2024; 250:109907. [PMID: 38492884 DOI: 10.1016/j.neuropharm.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
The glymphatic system plays a crucial role in maintaining optimal central nervous system (CNS) function by facilitating the removal of metabolic wastes. Aquaporin-4 (AQP4) protein, predominantly located on astrocyte end-feet, is a key pathway for metabolic waste excretion. β-Dystroglycan (β-DG) can anchor AQP4 protein to the end-feet membrane of astrocytes and can be cleaved by matrix metalloproteinase (MMP)-9 protein. Studies have demonstrated that hyperglycemia upregulates MMP-9 expression in the nervous system, leading to neuropathic pain. Ginkgolide B (GB) exerts an inhibitory effect on the MMP-9 protein. In this study, we investigated whether inhibition of MMP-9-mediated β-DG cleavage by GB is involved in the regulation of AQP4 polarity within the glymphatic system in painful diabetic neuropathy (PDN) and exerts neuroprotective effects. The PDN model was established by injecting streptozotocin (STZ). Functional changes in the glymphatic system were observed using magnetic resonance imaging (MRI). The paw withdrawal threshold (PWT) was measured to assess mechanical allodynia. The protein expressions of MMP-9, β-DG, and AQP4 were detected by Western blotting and immunofluorescence. Our findings revealed significant decreases in the efficiency of contrast agent clearance within the spinal glymphatic system of the rats, accompanied by decreased PWT, increased MMP-9 protein expression, decreased β-DG protein expression, and loss of AQP4 polarity. Notably, GB treatment demonstrated the capacity to ameliorate spinal cord glymphatic function by modulating AQP4 polarity through MMP-9 inhibition, offering a promising therapeutic avenue for PDN.
Collapse
Affiliation(s)
- Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Shuaiying Jia
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | | | - Wenmei Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Jingyan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Abdollahi-Karizno M, Roshanravan B, Zardast M, Naseri M. Aqueous extract of Teucrium polium ameliorates diabetes and induced-prostatic complication. J Diabetes Metab Disord 2022; 21:1241-1247. [PMID: 36404824 PMCID: PMC9672261 DOI: 10.1007/s40200-022-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Prostatic complications are common among diabetic patients. Previous research demonstrates that Teucrium polium (T. polium) has beneficial effects in diabetic cases. This study, therefore, aimed to evaluate the impacts of T. polium aqueous extract on the prostate of diabetic rats. METHODS Diabetes was induced in male Wistar rats by intraperitoneal injection of streptozotocin (50 mg/kg). a total of 40 Rats were randomly divided into the following groups: Control, Control + TP100 (TP100), Diabetic, Diabetic + TP100 (DTP100) and Diabetic + TP200 (DTP200). The intervention was done orally once per day for 56 days (8 weeks). An oral glucose tolerance test was conducted, glucose and insulin levels were assessed. Microscopic features of the ventral prostatic lobe were evaluated pathologically. RESULTS T. polium at both doses significantly reduced glucose levels in an insulin-independent pathway. T. polium at both doses significantly improved prostate weight, prostate epithelium height, and prostate secretory activity in comparison with the diabetic group. Interestingly, treatment of T. polium to healthy rats led to decreased epithelial height. CONCLUSION It could be deduced that T. polium has useful impacts on glucose control and may prevent prostatic complications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40200-022-00979-4.
Collapse
Affiliation(s)
- Mahdi Abdollahi-Karizno
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Mahmoud Zardast
- Atherosclerosis and Coronary Artery Research Centre, Department of Pathology, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Genomic Research Group, Birjand University of Medical Sciences, Ghafari Street, Birjand, Southern Khorasan Iran
| |
Collapse
|
3
|
Dou Y, Tan Y, Yu T, Ma X, Zhou Y, Zhao Y, Zhao Y, Liu X. MiR-132 down-regulates high glucose-induced β-dystroglycan degradation through Matrix Metalloproteinases-9 up-regulation in primary neurons. J Cell Mol Med 2021; 25:7783-7795. [PMID: 34160889 PMCID: PMC8358889 DOI: 10.1111/jcmm.16669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cognitive dysfunction is one of the complications of diabetes. Unfortunately, there is no effective methods to block its progression currently. One of the pathophysiological mechanisms is synaptic protein damage and neuronal signal disruption because of glucose metabolism disorder. Dystroglycan protein, located in the post‐synaptic membrane of neurons, links the intracellular cytoskeleton with extracellular matrix. Abnormal expression of dystroglycan protein affects neuronal biological functions and leads to cognitive impairment. However, there are no relevant studies to observe the changes of β‐dystroglycan protein in diabetes rat brain and in primary neurons under high glucose exposure. Our data demonstrated the alterations of cognitive abilities in the diabetic rats; β‐dystroglycan protein degradation occurred in hippocampal and cortical tissues in diabetic rat brain. We further explored the mechanisms underlying of this phenomenon. When neurons are exposed to high glucose environment in long‐term period, microRNA‐132 (miR‐132) would be down‐regulated in neurons. Matrix Metalloproteinases‐9 (MMP‐9) mRNA, as a target of miR‐132, could be up‐regulated; higher expression and overlay activity of MMP‐9 protein could increase β‐DG protein degradation. In this way, β‐DG degradation may affect structure and functions among the synapses, which related to cognition decline. It may provide some theoretical basis for elucidating the molecular mechanism of diabetes‐induced cognitive dysfunction.
Collapse
Affiliation(s)
- Yunxiao Dou
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Tan
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tongya Yu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoye Ma
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuchen Zhou
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yichen Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Gobbo MG, Dizeyi N, Abrahamsson PA, Bertilsson PA, Masitéli VS, Pytlowanciv EZ, Taboga SR, Góes RM. Influence of Melatonin on the Proliferative and Apoptotic Responses of the Prostate under Normal and Hyperglycemic Conditions. J Diabetes Res 2015; 2015:538529. [PMID: 26295055 PMCID: PMC4534615 DOI: 10.1155/2015/538529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 01/23/2023] Open
Abstract
The antitumor properties of melatonin (MLT) are known for prostate cancer cells. This study investigated whether MLT affects prostate maturation and interferes with tissue injuries induced by diabetes. MLT was administered to Wistar rats from 5 weeks of age in the drinking water (10 μg/kg b.w.), and diabetes was induced at the 13th week by streptozotocin (4.5 mg/100g b.w., i.p.). The animals were euthanized in the 14th and 21st weeks. MLT reduced the immunostained cells for androgen receptor (AR) by 10% in younger rats. Diabetes decreased cell proliferation and increased apoptosis. MLT treatment impeded apoptosis (p = 0.02) and augmented proliferation (p = 0.0008) and PCNA content in prostate following long-term diabetes due to restoration of testosterone levels and expression of melatonin receptor type 1B. The effect of MLT (500 µM, 5 mM, and 10 mM) on androgen-dependent (22Rv1) and androgen-independent (PC3) cancer cells and human prostate epithelial cells (PNTA1) under normal and hyperglycemic conditions (HG, 450 mg/dL) was analyzed. Contrary to PNTA1 and 22Rv1 cells, MLT improved the proliferation of PC3 cells in hyperglycemic medium. The combined data indicated that MLT had proliferative and antiapoptotic effects in prostate cells subjected to HG levels and it seems to involve specific MLT pathways rather than AR.
Collapse
Affiliation(s)
- Marina G. Gobbo
- Department of Cell Biology, Institute of Biology, UNICAMP, Avenue Bertrand Russel, 6109 Campinas, SP, Brazil
| | - Nishtman Dizeyi
- Department of Clinical Sciences, Division of Urological Research, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| | - Per-Anders Abrahamsson
- Department of Clinical Sciences, Division of Urological Research, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| | - Per-Anders Bertilsson
- Department of Clinical Sciences, Division of Urological Research, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| | - Viviane Sanches Masitéli
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, UNESP, São José do Rio Preto, SP, Brazil
| | - Eloisa Zanin Pytlowanciv
- Department of Cell Biology, Institute of Biology, UNICAMP, Avenue Bertrand Russel, 6109 Campinas, SP, Brazil
| | - Sebastião R. Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, UNESP, São José do Rio Preto, SP, Brazil
| | - Rejane M. Góes
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, UNESP, São José do Rio Preto, SP, Brazil
| |
Collapse
|
5
|
Pinto LC, Fávaro WJ, Cagnon VHA. Proliferative, structural and molecular features of the Mdx mouse prostate. Int J Exp Pathol 2010; 91:408-19. [PMID: 20618884 DOI: 10.1111/j.1365-2613.2010.00722.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The prostate is fundamental to the male reproductive process, and the stroma-epithelium interaction has an important role in prostate maintenance. Studies suggest that dystroglycan (DG) plays a role in cancer development in various organs. Thus, the aims of this work were to characterize morphological and proliferative features of the prostatic stroma and epithelium of mdx mice; to verify the immunolocalization of the α and β DG, IGF-1 and laminin α3 receptors; and to relate those structural and molecular events to prostate pathogenesis and to verify the viability of this experimental model in prostate studies. Thirty male mice (mdx and C57BL10/Uni) were divided into control and mdx groups. Samples from the ventral prostate were collected for immunological, Western Blotting, transmission electron microscopy and morphometric analyses. Oestradiol and testosterone measurements were verified. The results showed diminished testosterone and increased oestradiol levels in the mdx group. Atrophied cells and hypertrophied stroma were seen in the mdx mice. Weak α and β DG and laminin α3 immunolocalization was demonstrated in the mdx group. Intense insulin-like growth factor receptor α-1 (IGFRα-1) localization was identified in the mdx animals. Thus, mdx animals showed changes in molecular and structural integrity and proliferation signals, leading to glandular homoeostasis imbalance, and compromise of prostate function. Also, the steroid hormone imbalance and the increased IGF-1 receptor level detected in mdx mice could be considered as a crucial factor in the pathogenesis of prostatic disorders.
Collapse
Affiliation(s)
- Leslie C Pinto
- Department of Anatomy, Cell Biology, Physiology and Biophysic, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | |
Collapse
|
6
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:293-312. [PMID: 20418721 DOI: 10.1097/med.0b013e328339f31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|