1
|
Moore JF, DuVivier R, Johanningsmeier SD. Changes in the free amino acid profile of pickling cucumber during lactic acid fermentation. J Food Sci 2022; 87:599-611. [PMID: 35018637 DOI: 10.1111/1750-3841.15990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
Free amino acid (FAA) profiles of fresh, acidified, naturally fermented, and starter culture fermented cucumbers were analyzed by liquid chromatography triple quadrupole mass spectrometry. Fermented cucumbers contained more total FAA than acidified cucumbers (1,302 ± 102 mg/kg and 635 ± 35 mg/kg, respectively). Total FAA content of fermented cucumber was similar regardless of brine salt levels (2-6% NaCl) and starter culture addition. Glutamine (1491.4 ± 69.3 mg/kg), γ-aminobutyric acid (GABA, 269.6 ± 21.4 mg/kg), asparagine (113.0 ± 6.4 mg/kg), and citrulline (110.3 ± 8.5 mg/kg) were the most abundant FAA in fresh pickling cucumber, whereas GABA (181.3 ± 21.5 mg/kg), isoleucine (165.2 ± 11.2 mg/kg), leucine (129.8 ± 10.9 mg/kg), and lysine (110.9 ± 5.0 mg/kg) were the most abundant in fermented cucumber. GABA and ornithine were produced during fermentation, indicating glutamate decarboxylase and arginine deiminase activities. Notably, ornithine was significantly higher in natural (63.3 ± 31.5 mg/kg) versus starter culture fermented cucumbers (3.0 ± 0.7 mg/kg). This new information on FAA composition of fresh and fermented pickling cucumbers shows the impact of fermentation conditions on cucumber amino acid profiles while providing insight for manipulating fermentations for health promotion and consumer acceptance. PRACTICAL APPLICATION: This study reports changes in the free amino acid profiles of raw, fermented and acidified cucumbers, which may be valuable for understanding the impact of these foods on human health and nutrition. This information is useful for food microbiologists studying the metabolism of lactic acid bacteria during fermentation and/or designing starter cultures and could contribute to the development of novel fermented cucumber pickle products with enhanced nutritional value.
Collapse
Affiliation(s)
- Jennifer Fideler Moore
- U.S. Department of Agriculture, Agricultural Research Service, SEA, Food Science and Market Quality and Handling Research Unit, North Carolina State University, Raleigh, NC, USA.,North Carolina State University, Department of Food, Bioprocessing and Nutrition Sciences, Raleigh, NC, USA
| | - Rachel DuVivier
- North Carolina State University, Department of Food, Bioprocessing and Nutrition Sciences, Raleigh, NC, USA.,New York University, Department of Nutrition and Food Studies, New York, NY, USA
| | - Suzanne D Johanningsmeier
- U.S. Department of Agriculture, Agricultural Research Service, SEA, Food Science and Market Quality and Handling Research Unit, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Comunian R, Ferrocino I, Paba A, Daga E, Campus M, Di Salvo R, Cauli E, Piras F, Zurru R, Cocolin L. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Leblanc JC, Lindtner O, Moldeus P, Mosesso P, Parent-Massin D, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Younes M, Boon P, Chrysafidis D, Gürtler R, Tobback P, Altieri A, Rincon AM, Lambré C. Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA J 2017; 15:e04910. [PMID: 32625571 PMCID: PMC7009848 DOI: 10.2903/j.efsa.2017.4910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of glutamic acid-glutamates (E 620-625) when used as food additives. Glutamate is absorbed in the intestine and it is presystemically metabolised in the gut wall. No adverse effects were observed in the available short-term, subchronic, chronic, reproductive and developmental studies. The only effect observed was increased kidney weight and increased spleen weight; however, the increase in organ weight was not accompanied by adverse histopathological findings and, therefore, the increase in organ weight was not considered as an adverse effect. The Panel considered that glutamic acid-glutamates (E 620-625) did not raise concern with regards to genotoxicity. From a neurodevelopmental toxicity study, a no observed adverse effect level (NOAEL) of 3,200 mg monosodium glutamate/kg body weight (bw) per day could be identified. The Panel assessed the suitability of human data to be used for the derivation of a health-based guidance value. Although effects on humans were identified human data were not suitable due to the lack of dose-response data from which a dose without effect could be identified. Based on the NOAEL of 3,200 mg monosodium glutamate/kg bw per day from the neurodevelopmental toxicity study and applying the default uncertainty factor of 100, the Panel derived a group acceptable daily intake (ADI) of 30 mg/kg bw per day, expressed as glutamic acid, for glutamic acid and glutamates (E 620-625). The Panel noted that the exposure to glutamic acid and glutamates (E 620-625) exceeded not only the proposed ADI, but also doses associated with adverse effects in humans for some population groups.
Collapse
|
4
|
Effect of osmotic dehydration of olives as pre-fermentation treatment and partial substitution of sodium chloride by monosodium glutamate in the fermentation profile of Kalamata natural black olives. Food Microbiol 2017; 63:72-83. [DOI: 10.1016/j.fm.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022]
|
5
|
de Castro A, Sánchez AH, Beato VM, Casado FJ, Montaño A. Stability of monosodium glutamate in green table olives and pickled cucumbers as a function of packing conditions and storage time. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:1158-64. [PMID: 24720705 DOI: 10.1080/19440049.2014.913320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effects of different packing conditions and storage times on the stability of monosodium glutamate (MSG) added to two different fermented vegetables (Spanish-type green table olives and pickled cucumbers) were studied. Factors such as packaging material (glass bottle versus plastic pouch), heat treatment (pasteurisation versus non-pasteurisation), and the presence or not of a preservative compound (potassium sorbate) were considered. The MSG content of pickled cucumbers was stable for up to 1 year of storage in all packing conditions studied. The MSG content also remained stable in pasteurised green table olives. On the contrary, MSG was extensively degraded (>75% degradation) after 54 weeks of storage in unpasteurised green olives with a higher degradation rate in glass bottles compared with plastic pouches. In the presence of potassium sorbate, MSG was also considerably degraded in olives packed in plastic pouches (>50% degradation), but hardly degraded in glass bottles. The results indicate that MSG degradation in olives is due to the action of both lactic acid bacteria and yeasts, with the formation of γ-aminobutyric acid as the major end-product.
Collapse
Affiliation(s)
- Antonio de Castro
- a Food Biotechnology Department , Instituto de la Grasa (C.S.I.C.) , Seville , Spain
| | | | | | | | | |
Collapse
|
6
|
Sánchez AH, Beato VM, López-López A, Montaño A. Comparative study of the use of sarcosine, proline and glycine as acrylamide inhibitors in ripe olive processing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:242-9. [DOI: 10.1080/19440049.2013.871756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Casado FJ, Montaño A, Spitzner D, Carle R. Investigations into acrylamide precursors in sterilized table olives: Evidence of a peptic fraction being responsible for acrylamide formation. Food Chem 2013; 141:1158-65. [DOI: 10.1016/j.foodchem.2013.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
8
|
Beato VM, Sánchez AH, de Castro A, Montaño A. Effect of processing and storage time on the contents of organosulfur compounds in pickled blanched garlic. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3485-3491. [PMID: 22416880 DOI: 10.1021/jf3002075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The influence of processing, with and without fermentation, on the contents of organosulfur compounds, namely, γ-glutamyl peptides, S-alk(en)yl-L-cysteine sulfoxides (ACSOs), and S-allyl-L-cysteine (SAC), in pickled blanched garlic was evaluated. For each processing type, the effect of the preservation method and storage time was also analyzed. Blanching in hot water (90 °C for 5 min) hardly affected the individual organosulfur compound content. The fermentation and packing steps negatively affected the levels of all compounds except for SAC. The content of this compound increased during storage at room temperature whereas γ-glutamyl peptides and ACSOs were degraded to various extents. The pasteurization treatment itself had no significant effect on the concentrations of organosulfur compounds. Use of the corresponding fermentation brine in the case of the fermented product in conjunction with refrigerated storage was found to be the best method to preserve the levels of organosulfur compounds in pickled garlic stored for up to one year.
Collapse
|
9
|
Douieb H, Benlemlih M, Errachidi F. Improvement of the lactic acid fermentation of capers through an experimental factorial design ( Capparis spinosa L). GRASAS Y ACEITES 2010. [DOI: 10.3989/gya.010510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Medina E, Romero C, de Castro A, Brenes M, García A. Inhibitors of lactic acid fermentation in Spanish-style green olive brines of the Manzanilla variety. Food Chem 2008; 110:932-7. [DOI: 10.1016/j.foodchem.2008.02.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 11/29/2022]
|
11
|
Casado FJ, Sánchez AH, Rejano L, Montaño A. D-amino acid formation in sterilized alkali-treated olives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:3503-7. [PMID: 17407322 DOI: 10.1021/jf0701685] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The occurrence of d-amino acids in commercial ripe olives, a well-known sterilized alkali-treated product, was investigated by high-performance liquid chromatography (HPLC) with precolumn automatic derivatization. Absolute amounts of D-amino acids were in total 18.6-38.2 mg/100 g edible portion. The major D-amino acids were D-aspartic acid, D-glutamic acid, D-serine, and D-leucine. Furthermore, to evaluate the effects of sterilization time and olive pH on amino acid racemization, a simulated processing of green ripe olives was carried out. Serine (both free and bound form) was the most-racemized amino acid after heat treatment. Sterilization (15-35 min at 121 degrees C) increased the racemization values of both free and protein-bound amino acids, although in case of protein-bound phenylalanine the increase was not statistically significant. With an increase of pH from 8 to 10 units, the racemization values of all amino acids increased significantly, except for free forms of aspartic and glutamic acids. In general, the effects of the sterilization time and olive pH on total concentration (L + D enantiomers) of each amino acid were also significant.
Collapse
|
12
|
Influence of processing, storage time, and pasteurisation upon the tocopherol and amino acid contents of treated green table olives. Eur Food Res Technol 2004. [DOI: 10.1007/s00217-004-1076-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Sánchez AH, de Castro A, Rejano L, Montaño A. Comparative study on chemical changes in olive juice and brine during green olive fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:5975-5980. [PMID: 11141267 DOI: 10.1021/jf000563u] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Changes in physicochemical characteristics, substrate depletion, and product formation during fermentation were followed in both brine and olive juice in order to achieve a complete knowledge of fermentation chemistry in Spanish-type green olives. Both spontaneous and controlled fermentations were investigated. Fermentation rate, irrespective of the type of fermentation, was lower in olive juice than in brine, but the main acid products eventually reached equilibrium. Final free acidity remained significantly (p < 0.05) higher, and combined acidity remained lower, in brine than in olive juice in both fermentations, but differences in final pH were not significant in controlled fermentation. Final concentrations of lactic and formic acids were significantly (p < 0. 05) higher, and those of ethanol and succinic acid were lower, in controlled fermentation than in spontaneous fermentation. Butanediol, attributable to Enterobacteriaceae growth, was formed only in the latter case. Calculated carbon recoveries were not significantly (p < 0.05) different in any case, giving a mean of some 78%.
Collapse
Affiliation(s)
- A H Sánchez
- Instituto de la Grasa (Consejo Superior Investigaciones Cientificas), Apartado 1078, 41012 Seville, Spain
| | | | | | | |
Collapse
|