1
|
ZHU C, ZHENG Y, ZHANG G, Xiaoling Y, ZHANG Q, ZHAO G, Fuqiang L. Enhacing emulsification of meat broth system mixed with myofibrillar proteins and type I collagen: The role of NaCl and heat. Food Chem X 2024; 24:101945. [PMID: 39582639 PMCID: PMC11582443 DOI: 10.1016/j.fochx.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
A mixed system with a 5:1 ratio of beef myofibrillar protein to type I collagen was prepared to mimic meat broths. The study aimed to determine the combined effects of various NaCl concentrations (0, 0.2 M, 0.4 M, 0.6 M) and heat treatment on solubility, emulsifying properties (EAI, ESI), viscosity, and particle size of the mixed protein system. Mechanistic changes were examined through molecular interactions, intrinsic fluorescence, protein molecular weight, and Raman spectroscopy. The results showed that, without heat treatment, NaCl enhanced solubility, EAI, ESI, emulsion viscosity, and hydrogen bonding. After heating (90 °C, 30 min), elevated 0.4-0.6 M NaCl created an unstable, crowded environment, resulting in protein aggregation and reduced solubility and emulsifying performance. The results indicated that heating at 90 °C with 0.2 M NaCl was beneficial for meat emulsification, providing valuable production guidance for optimizing the formulation of meat products with low salt and high emulsifying properties.
Collapse
Affiliation(s)
- Chaozhi ZHU
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Yangyi ZHENG
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiyan ZHANG
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Y.U. Xiaoling
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuhui ZHANG
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiming ZHAO
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - L.I. Fuqiang
- Lianyuan Comprehensive Test Station, Lianyuan 417100, China
| |
Collapse
|
2
|
Othmeni I, Karoui R, Blecker C. Impact of pH on the structure, interfacial and foaming properties of pea protein isolate: Investigation of the structure - Function relationship. Int J Biol Macromol 2024; 278:134818. [PMID: 39154679 DOI: 10.1016/j.ijbiomac.2024.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
This study explored the relationship between pea protein foaming properties and their structure and physicochemical properties under neutral and acidic pH. Results showed that pH modified the zeta potential, particle size and surface tension due to electrostatic changes. FT-MIR and fluorescence spectra revealed pH-induced conformational changes, exposing hydrophobic groups and increasing sulfhydryl content, promoting protein aggregation. At pH 3, the highest foaming capacity (1.273) and lowest foam expansion (6.967) were observed, associated with increased surface hydrophobicity and net charges, ideal for creating light foams with high liquid incorporation for acidic beverages or fruit-based mousses. Pea protein isolate generated stable foams with foam volume stability between 86.662 % and 94.255 %. Although neutral pH conditions showed the highest foam volume stability, their air bubbles increased in size and transitioned from spherical to polyhedral shape, suitable for visual-centric applications, like cappuccino foam and beer-head retention. Foams at pH 5 exhibited the smallest bubbles and maintained their spherical shape, enhancing drainage resistance, beneficial for whipped toppings. Strong correlations (Pearson correlation coefficient higher than 0.600) were noted between the structure, surface and foaming properties, providing crucial insights into optimizing pea protein functionality across various pH conditions, enabling the development of plant-based foamed products with tailored properties.
Collapse
Affiliation(s)
- Ines Othmeni
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium; Cosucra Groupe Warcoing S.A., B-7040 Warcoing, Belgium.
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium
| |
Collapse
|
3
|
Kaur S, Seem K, Ali A, Jaiswal S, Gumachanamardi P, Kaur G, Singh N, Touthang L, Singh SK, Bhardwaj R, Singh BK, Mishra VK, Riar A. A comprehensive review on nutritional, nutraceutical, and industrial perspectives of perilla ( Perilla frutscens L.) seeds - An orphan oilseed crop. Heliyon 2024; 10:e33281. [PMID: 39022021 PMCID: PMC11252951 DOI: 10.1016/j.heliyon.2024.e33281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
There is a growing need to mainstream orphan or underutilized crops to enhance nutritional security and sustainable agriculture. Among these, Perilla frutescens L. is an important crop due to its rich nutritional and phytochemical content which makes it significant in nutrition, medicine, and industrial sector. Perilla seeds are mainly rich in ω-3 fatty acids, dietary fiber, amino acids, vitamins, and minerals, high α-linolenic acid, which contributes to their health benefits. This review explores the nutritional profile of perilla seeds and highlights its unique composition compared to other oilseed crops. It also analyzes the phytochemical components of perilla seeds and their various biological activities, including antioxidant, antidiabetic, antiobesity, cardioprotective, anticancer, antimicrobial, neuroprotective, and anti-inflammatory effects. These activities demonstrate the potential of perilla seeds in both pharmaceutical and food sectors. The review also covers recent advancements in genomics and transgenic research discussing potential areas for crop improvement. Additionally, it explores the use of perilla seeds in functional foods, blending perilla oil with other oils, and their applications in enhancing product formulations. This review offers valuable insights for researchers, students, policymakers, environmentalists, and industry professionals by detailing the potential of perilla seeds across various sectors. The findings support sustainable agriculture, crop diversification, and innovative product development, thus contributing to the integration of perilla into mainstream agriculture.
Collapse
Affiliation(s)
- Simardeep Kaur
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Karishma Seem
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ansheef Ali
- ICAR-Indian Agricultural Research Institute, Assam, 734301, India
| | - Sandeep Jaiswal
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | | | - Gurkanwal Kaur
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Naseeb Singh
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Letngam Touthang
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | | | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Binay K. Singh
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Vinay Kumar Mishra
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| |
Collapse
|
4
|
Feng X, Dai H, Tan H, Tang M, Ma L, Zhang Y. Improvement of low-oil gelatin emulsions performance by adjusting the electrostatic interaction between gelatin and nanocellulose with different morphologies. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Structural and Physicochemical Characterization of Extracted Proteins Fractions from Chickpea ( Cicer arietinum L.) as a Potential Food Ingredient to Replace Ovalbumin in Foams and Emulsions. Polymers (Basel) 2022; 15:polym15010110. [PMID: 36616460 PMCID: PMC9824673 DOI: 10.3390/polym15010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Chickpeas are the third most abundant legume crop worldwide, having a high protein content (14.9-24.6%) with interesting technological properties, thus representing a sustainable alternative to animal proteins. In this study, the surface and structural properties of total (TE) and sequential (ALB, GLO, and GLU) protein fractions isolated from defatted chickpea flour were evaluated and compared with an animal protein, ovalbumin (OVO). Differences in their physicochemical properties were evidenced when comparing TE with ALB, GLO, and GLU fractions. In addition, using a simple and low-cost extraction method it was obtained a high protein yield (82 ± 4%) with a significant content of essential and hydrophobic amino acids. Chickpea proteins presented improved interfacial and surface behavior compared to OVO, where GLO showed the most significant effects, correlated with its secondary structure and associated with its flexibility and higher surface hydrophobicity. Therefore, chickpea proteins have improved surface properties compared to OVO, evidencing their potential use as foam and/or emulsion stabilizers in food formulations for the replacement of animal proteins.
Collapse
|
6
|
Bopitiya D, Hearn MTW, Zhang J, Bennett LE. Demonstration of anti-oxidant properties of mustard seed (Brassica juncea) protein isolate in orange juice. Food Chem 2022; 396:133648. [PMID: 35843007 DOI: 10.1016/j.foodchem.2022.133648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
Previous research has shown that formulated and natural beverages containing mixtures of anti-oxidants can produce stable levels of hydrogen peroxide (H2O2). The aim of this study was to demonstrate the ultimate anti-oxidant effects of proteins for suppressing H2O2, using a protein extract from mustard seed (Brassica juncea). The mustard seed protein isolate (MPI) contained ∼51% protein, and 6.4 mg GAe/g TS of total reducible substances, presumably representing secondary metabolites, including polyphenolics. Dose-dependent suppression of H2O2 (present at 110 µM and 550 µM), in fresh and thermally-processed orange juice was complete in the presence of 0.1 mg/mL MPI after 24 hr, with slightly higher anti-oxidant efficacy than the fruit juice-derived reference protein, thaumatin. The combination of thiol-rich amino acid (methionine and cysteine)-containing proteins and other anti-oxidant species in the MPI were highly effective for inhibiting autoxidation-mediated production of H2O2 in orange juice, and may be useful for other manufactured beverages.
Collapse
Affiliation(s)
- Dilini Bopitiya
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Milton T W Hearn
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Louise E Bennett
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
7
|
Wang Z, Cheng S, Wu D, Xu Z, Xu S, Tu M, Du M. Physicochemical properties of hydrophobic and hydrophilic peptides from oyster protein. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ziye Wang
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian Liaoning 116034 China
| | - Shuzhen Cheng
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian Liaoning 116034 China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Di Wu
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian Liaoning 116034 China
| | - Zhe Xu
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian Liaoning 116034 China
| | - Shiqi Xu
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian Liaoning 116034 China
| | - Maolin Tu
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian Liaoning 116034 China
| | - Ming Du
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian Liaoning 116034 China
| |
Collapse
|
8
|
Wu Y, Lei C, Li J, Chen Y, Liang H, Li Y, Li B, Luo X, Pei Y, Liu S. Improvement of O/W emulsion performance by adjusting the interaction between gelatin and bacterial cellulose nanofibrils. Carbohydr Polym 2022; 276:118806. [PMID: 34823811 DOI: 10.1016/j.carbpol.2021.118806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
This study was designed to improve the stability of medium internal phase emulsion by adjusting the electrostatic interaction between gelatin (GLT) and TEMPO-oxidized bacterial cellulose nanofibrils (TOBC). The influences of polysaccharide-protein ratio (1:10, 1:5, and 1:2.5) and pH (3.0, 4.7, 7.0, and 11.0) on the emulsion properties were investigated. The droplet size of TOBC/GLT-stabilized emulsion was increased with the TOBC proportion increasing at pH 3.0-11.0. Additionally, emulsion had a larger droplet size at pH 4.7 (the electrical equivalence point pH of mixtures). However, the addition of TOBC significantly improved the emulsion stability. The emulsions prepared with TOBC/GLT mixtures (mixing ratio of 1:2.5) at pH 3.0-7.0 were stable without creaming during the storage. It was because the formation of nanofibrils network impeded the droplet mobility, and the emulsion viscosity and viscoelastic modulus were increased with the addition of TOBC. These findings were meaningful to modulate the physical properties of emulsions.
Collapse
Affiliation(s)
- Yilan Wu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chan Lei
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jing Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yijie Chen
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongshan Liang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430073, China; School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China.
| | - Ying Pei
- School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China.
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou City, Henan 450001, China.
| |
Collapse
|
9
|
Bozkurt F, Bekiroglu H, Dogan K, Karasu S, Sagdic O. Technological and bioactive properties of wheat glutenin hydrolysates prepared with various commercial proteases. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Yao YT, Wang WY, Liu HM, Hou LX, Wang XD. Emulsifying properties of Chinese quince seed gum in oil-in-water emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Li C, Yang J, Yao L, Qin F, Hou G, Chen B, Jin L, Deng J, Shen Y. Characterisation, physicochemical and functional properties of protein isolates from Amygdalus pedunculata Pall seeds. Food Chem 2019; 311:125888. [PMID: 31771911 DOI: 10.1016/j.foodchem.2019.125888] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
Amygdalus pedunculata Pall is a kind of desert woody oil plant, and its seeds are high in protein. The protein of Amygdalus pedunculata Pall (API) was identified by SDS-PAGE, 2-DE and MS. More than 300 proteins were identified. The improved solubility, emulsifying properties and foaming properties of API were observed in a pH range of 2.0-12.0 and a sodium chloride concentration of 0-1.0 M. The results showed that API had a good solubility (94.2%), bulk density (0.107 g/mL), oil absorption capacity (3.54 g/g), thermal stability (91.58 °C), emulsifying property (70 m2/g) and foaming property (83.7%). The conformation changes of API were studied by fluorescence and differential scanning calorimetry (DSC). The degree of denaturation of denaturants for API was guanidine hydrochloride > urea > SDS. These results showed that API has good processing performance and can be used as a new type of plant protein resource.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Juzhuan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Lu Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fangling Qin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China; College of Chemistry and Chemical Engineering, Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Guofeng Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jianjun Deng
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
12
|
Cao B, Fang L, Liu C, Min W, Liu J. Effects of high hydrostatic pressure on the functional and rheological properties of the protein fraction extracted from pine nuts. FOOD SCI TECHNOL INT 2017; 24:53-66. [DOI: 10.1177/1082013217726883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Baiying Cao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| |
Collapse
|
13
|
Characterization and functional properties of protein isolates from wild almond. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9553-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Study of the functional properties of canola protein concentrates and isolates extracted by electro-activated solutions as non-invasive extraction method. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Optimization of arachin extraction from defatted peanut (Arachis hypogaea) cakes and effects of ultra-high pressure (UHP) treatment on physiochemical properties of arachin. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Jiang L, Wang Z, Li Y, Meng X, Sui X, Qi B, Zhou L. Relationship Between Surface Hydrophobicity and Structure of Soy Protein Isolate Subjected to Different Ionic Strength. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2013.865057] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Relating the variation of secondary structure of gelatin at fish oil–water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability. Food Chem 2014; 143:484-91. [DOI: 10.1016/j.foodchem.2013.07.130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/08/2013] [Accepted: 07/29/2013] [Indexed: 11/22/2022]
|
18
|
Relationship between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate Subjected to Heat Treatment. J CHEM-NY 2014. [DOI: 10.1155/2014/475389] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated relationship between secondary structure and surface hydrophobicity of soy protein isolate (SPI) subjected to a thermal treatment at 70~90°C. Heat denaturation increased the surface hydrophobicity and surface hydrophobicity decreased as aggregate formed. Heat caused an increase in the relative amount ofα-helix structures and an overall decrease in the amount ofβ-sheet structures when compared with nontreated SPI. The relative amounts of secondary structures varied with time, temperature, and intensity of heat treatment applied. Theβ-sheet structure was most important for its significant role in denaturation of 7S globulin and following formed aggregates and even in denaturation of 11S globulin. The amount ofβ-sheet structure in SPI had an inverse correlation with the surface hydrophobicity when the temperature was kept below 90°C. Besides,β-turn structure increased asβ-7S/B-11S aggregate formated.
Collapse
|