1
|
Paria P, Chakraborty HJ, Pakhira A, Das Mohapatra PK, Parida PK, Behera BK. Trh positive strain of Vibrio parahaemolyticus induce immunity by modulating MAPK pathway: A molecular pathogenic insight in immune-related gene regulation. Microb Pathog 2022; 164:105436. [DOI: 10.1016/j.micpath.2022.105436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
|
2
|
Bian S, Zeng W, Li Q, Li Y, Wong NK, Jiang M, Zuo L, Hu Q, Li L. Genetic Structure, Function, and Evolution of Capsule Biosynthesis Loci in Vibrio parahaemolyticus. Front Microbiol 2021; 11:546150. [PMID: 33505361 PMCID: PMC7829505 DOI: 10.3389/fmicb.2020.546150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Capsule-forming extracellular polysaccharides are crucial for bacterial host colonization, invasion, immune evasion, and ultimately pathogenicity. Due to warming ocean waters and human encroachment of coastal ecosystems, Vibrio parahaemolyticus has emerged as a globally important foodborne enteropathogen implicated in acute gastroenteritis, wound infections, and septic shock. Conventionally, the antigenic properties of lipopolysaccharide (LPS, O antigen) and capsular polysaccharide (CPS, K antigen) have provided a basis for serotyping V. parahaemolyticus, whereas disclosure of genetic elements encoding 13 O-serogroups have allowed molecular serotyping methods to be developed. However, the genetic structure of CPS loci for 71 K-serogroups has remained unidentified, limiting progress in understanding its roles in V. parahaemolyticus pathophysiology. In this study, we identified and characterized the genetic structure and their evolutionary relationship of CPS loci of 40 K-serogroups through whole genome sequencing of 443 V. parahaemolyticus strains. We found a distinct pattern of CPS gene cluster across different K-serogroups and expanded its new 3'-border by identifying glpX as a key gene conserved across all K-serogroups. A total of 217 genes involved in CPS biosynthesis were annotated. Functional contents and genetic structure of the 40 K-serogroups were analyzed. Based on inferences from species trees and gene trees, we proposed an evolution model of the CPS gene clusters of 40 K-serogroups. Horizontal gene transfer by recombination from other Vibrio species, gene duplication is likely to play instrumental roles in the evolution of CPS in V. parahaemolyticus. This is the first time, to the best of our knowledge, that a large scale of CPS gene clusters of different K-serogroups in V. parahaemolyticus have been identified and characterized in evolutionary contexts. This work should help advance understanding on the variation of CPS in V. parahaemolyticus and provide a framework for developing diagnostically relevant serotyping methods.
Collapse
Affiliation(s)
- Shengzhe Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wenhong Zeng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiwen Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Nai-Kei Wong
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Le Zuo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liqiang Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| |
Collapse
|
3
|
Variation of genomic islands and flanking fragments in Vibrio parahaemolyticus isolates from environmental and clinical sources in Taiwan. Int J Food Microbiol 2017; 259:68-76. [PMID: 28841447 DOI: 10.1016/j.ijfoodmicro.2017.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/28/2023]
Abstract
Vibrio parahaemolyticus is a halophilic foodborne pathogenic bacterium that causes gastroenteritis; it has become an issue of global concern since the emergence and spread of pandemic O3:K6 strains. This study evaluated the role of Vibrio pathogenicity island (VPaI)-associated fragments in the genetic variation and grouping of this pathogen. Distribution of some VPaI fragments and flanking fragments (VPaI-1, VPaI-4, VPaI-5, VPaI-6 and VPaI-7) was determined in a total of 53 V. parahaemolyticus isolates from environmental and clinical sources in Taiwan, and supported by the sequences of seven fragments of VPaI-4 and its flanking fragment VP2145. As determined from the distribution of these VPaI-associated fragments, the clinical pandemic isolates were closely related in a single cluster; the clinical nonpandemic isolates were grouped into several clusters, while the environmental isolates were comparatively highly diversified. The profiles of virulence-associated genes of environmental pathogenic isolates varied, and were closer to those of clinical nonpandemic isolates than those of pandemic isolates. Isolates with atypical profiles of the VPaI-associated fragments and virulence-associated genes were identified. Sequences of VP2145 exhibited a close phylogenetic relationship among these local isolates, which were distinct from most V. parahaemolyticus strains from other geographic regions. This investigation demonstrated the application of VPaI-associated fragments in studying the genetic variation and clustering of V. parahaemolyticus isolates from different sources.
Collapse
|
4
|
Tey YH, Jong KJ, Fen SY, Wong HC. Occurrence of Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus in the Aquacultural Environments of Taiwan. J Food Prot 2015; 78:969-76. [PMID: 25951392 DOI: 10.4315/0362-028x.jfp-14-405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The occurrence of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae in a total of 72 samples from six aquaculture ponds for groupers, milk fish, and tilapia in southern Taiwan was examined by the membrane filtration and colony hybridization method. The halophilic V. parahaemolyticus was only recovered in seawater ponds, with a high isolation frequency of 86.1% and a mean density of 2.6 log CFU/g. V. cholerae was found in both the seawater and freshwater ponds but preferentially in freshwater ponds, with a frequency of 72.2% and a mean density of 1.65 log CFU/g. V. vulnificus was identified mainly in seawater ponds, with an isolation frequency of 27.8%. The density of V. parahaemolyticus in seawater ponds was positively related to water temperature (Pearson correlation coefficient, r = 0.555) and negatively related to salinity (r = 2 0.333). The density of V. cholerae in all six ponds was positively related to water temperature (r = 0.342) and negatively related to salinity (r = 2 0.432). Two putatively pathogenic tdh(+) V. parahaemolyticus isolates (1.4% of the samples) and no ctx(+) V. cholerae isolates were identified. The experimental results may facilitate assessments of the risk posed by these pathogenic Vibrio species in Taiwan, where aquaculture provides a large part of the seafood supply.
Collapse
Affiliation(s)
- Yao Hsien Tey
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China
| | - Koa-Jen Jong
- Department of Biological Resources, National Chiayi University, Chiayi, Taiwan 600, Republic of China
| | - Shin-Yuan Fen
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China.
| |
Collapse
|
5
|
El-Malah SS, Yang Z, Hu M, Li Q, Pan Z, Jiao X. Vibrio parahaemolyticus strengthens their virulence through modulation of cellular reactive oxygen species in vitro. Front Cell Infect Microbiol 2014; 4:168. [PMID: 25566508 PMCID: PMC4269196 DOI: 10.3389/fcimb.2014.00168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/14/2014] [Indexed: 02/05/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is one of the emergent food-borne pathogens that are commensally associated with various shellfish species throughout the world. It is strictly environmental and many strains are pathogenic to humans. The virulent strains cause distinct diseases, including wound infections, septicemia, and most commonly, acute gastroenteritis, which is acquired through the consumption of raw or undercooked seafood, especially shellfish. Vp has two type three secretion systems (T3SSs), which triggering its cytotoxicity and enterotoxicity via their effectors. To better understand the pathogenesis of Vp, we established a cell infection model in vitro using a non-phagocytic cell line. Caco-2 cells were infected with different strains of Vp (pandemic and non-pandemic strains) and several parameters of cytotoxicity were measured together with adhesion and invasion indices, which reflect the pathogen's virulence. Our results show that Vp adheres to cell monolayers and can invade non-phagocytic cells. It also survives and persists in non-phagocytic cells by modulating reactive oxygen species (ROS), allowing its replication, and resulting in complete cellular destruction. We conclude that the pathogenicity of Vp is based on its capacities for adhesion and invasion. Surprisingly's; enhanced of ROS resistance period could promote the survival of Vp inside the intestinal tract, facilitating tissue infection by repressing the host's oxidative stress response.
Collapse
Affiliation(s)
- Shimaa S El-Malah
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Zhenquan Yang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China ; College of Food Science and Engineering, Yangzhou University Yangzhou, China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China ; Testing Center, Yangzhou University Yangzhou, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| |
Collapse
|
6
|
Kalburge SS, Whitaker WB, Boyd EF. High-salt preadaptation of Vibrio parahaemolyticus enhances survival in response to lethal environmental stresses. J Food Prot 2014; 77:246-53. [PMID: 24490918 DOI: 10.4315/0362-028x.jfp-13-241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adaptation to changing environmental conditions is an important strategy for survival of foodborne bacterial pathogens. Vibrio parahaemolyticus is a gram-negative seafoodborne enteric pathogen found in the marine environment both free living and associated with oysters. This pathogen is a moderate halophile, with optimal growth at 3% NaCl. Among the several stresses imposed upon enteric bacteria, acid stress is perhaps one of the most important. V. parahaemolyticus has a lysine decarboxylase system responsible for decarboxylation of lysine to the basic product cadaverine, an important acid stress response system in bacteria. Preadaptation to mild acid conditions, i.e., the acid tolerance response, enhances survival under lethal acid conditions. Because of the variety of conditions encountered by V. parahaemolyticus in the marine environment and in oyster postharvest facilities, we examined the nature of the V. parahaemolyticus acid tolerance response under high-salinity conditions. Short preadaptation to a 6% salt concentration increased survival of the wild-type strain but not that of a cadA mutant under lethal acid conditions. However, prolonged exposure to high salinity (16 h) increased survival of both the wild-type and the cadA mutant strains. This phenotype was not dependent on the stress response sigma factor RpoS. Although this preadaptation response is much more pronounced in V. parahaemolyticus, this characteristic is not limited to this species. Both Vibrio cholerae and Vibrio vulnificus also survive better under lethal acid stress conditions when preadapted to high-salinity conditions. High salt both protected the organism against acid stress and increased survival under -20°C cold stress conditions. High-salt adaptation of V. parahaemolyticus strains significantly increases survival under environmental stresses that would otherwise be lethal to these bacteria.
Collapse
Affiliation(s)
- Sai Siddarth Kalburge
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - W Brian Whitaker
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
7
|
Ceccarelli D, Hasan NA, Huq A, Colwell RR. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol 2013; 3:97. [PMID: 24377090 PMCID: PMC3858888 DOI: 10.3389/fcimb.2013.00097] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/23/2013] [Indexed: 12/18/2022] Open
Abstract
Vibrio parahaemolyticus, autochthonous to estuarine, marine, and coastal environments throughout the world, is the causative agent of food-borne gastroenteritis. More than 80 serotypes have been described worldwide, based on antigenic properties of the somatic (O) and capsular (K) antigens. Serovar O3:K6 emerged in India in 1996 and subsequently was isolated worldwide, leading to the conclusion that the first V. parahaemolyticus pandemic had taken place. Most strains of V. parahaemolyticus isolated from the environment or seafood, in contrast to clinical strains, do not produce a thermostable direct hemolysin (TDH) and/or a TDH-related hemolysin (TRH). Type 3 secretion systems (T3SSs), needle-like apparatuses able to deliver bacterial effectors into host cytoplasm, were identified as triggering cytotoxicity and enterotoxicity. Type 6 secretion systems (T6SS) predicted to be involved in intracellular trafficking and vesicular transport appear to play a role in V. parahaemolyticus virulence. Recent advances in V. parahaemolyticus genomics identified several pathogenicity islands (VpaIs) located on either chromosome in both epidemic and pandemic strains and comprising additional colonization factors, such as restriction-modification complexes, chemotaxis proteins, classical bacterial surface virulence factors, and putative colicins. Furthermore, studies indicate strains lacking toxins and genomic regions associated with pathogenicity may also be pathogenic, suggesting other important virulence factors remain to be identified. The unique repertoire of virulence factors identified to date, their occurrence and distribution in both epidemic and pandemic strains worldwide are described, with the aim of highlighting the complexity of V. parahaemolyticus pathogenicity as well as its dynamic genome.
Collapse
Affiliation(s)
- Daniela Ceccarelli
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Nur A Hasan
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; CosmosID Inc. College Park, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; Maryland Institute of Applied Environmental Health, University of Maryland College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; CosmosID Inc. College Park, MD, USA ; Maryland Institute of Applied Environmental Health, University of Maryland College Park, MD, USA ; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
8
|
Molecular characterization of clinical and environmental Vibrio parahaemolyticus isolates in Taiwan. Int J Food Microbiol 2013; 165:18-26. [DOI: 10.1016/j.ijfoodmicro.2013.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022]
|
9
|
The Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model. Infect Immun 2012; 80:1834-45. [PMID: 22392925 DOI: 10.1128/iai.06284-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vibrio parahaemolyticus, a marine bacterium, is the causative agent of gastroenteritis associated with the consumption of seafood. It contains a homologue of the toxRS operon that in V. cholerae is the key regulator of virulence gene expression. We examined a nonpolar mutation in toxRS to determine the role of these genes in V. parahaemolyticus RIMD2210633, an O3:K6 isolate, and showed that compared to the wild type, ΔtoxRS was significantly more sensitive to acid, bile salts, and sodium dodecyl sulfate stresses. We demonstrated that ToxRS is a positive regulator of ompU expression, and that the complementation of ΔtoxRS with ompU restores stress tolerance. Furthermore, we showed that ToxRS also regulates type III secretion system genes in chromosome I via the regulation of the leuO homologue VP0350. We examined the effect of ΔtoxRS in vivo using a new orogastric adult murine model of colonization. We demonstrated that streptomycin-treated adult C57BL/6 mice experienced prolonged intestinal colonization along the entire intestinal tract by the streptomycin-resistant V. parahaemolyticus. In contrast, no colonization occurred in non-streptomycin-treated mice. A competition assay between the ΔtoxRS and wild-type V. parahaemolyticus strains marked with the β-galactosidase gene lacZ demonstrated that the ΔtoxRS strain was defective in colonization compared to the wild-type strain. This defect was rescued by ectopically expressing ompU. Thus, the defect in stress tolerance and colonization in ΔtoxRS is solely due to OmpU. To our knowledge, the orogastric adult murine model reported here is the first showing sustained intestinal colonization by V. parahaemolyticus.
Collapse
|
10
|
Parsons MB, Cooper KLF, Kubota KA, Puhr N, Simington S, Calimlim PS, Schoonmaker-Bopp D, Bopp C, Swaminathan B, Gerner-Smidt P, Ribot EM. PulseNet USA standardized pulsed-field gel electrophoresis protocol for subtyping of Vibrio parahaemolyticus. Foodborne Pathog Dis 2007; 4:285-92. [PMID: 17883312 DOI: 10.1089/fpd.2007.0089] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PulseNet is a national molecular subtyping network for foodborne disease surveillance composed of public health and food regulatory agencies. Participants employ molecular subtyping of foodborne pathogens using a standardized method of pulsed-field gel electrophoresis (PFGE) for conducting laboratory-based surveillance of foodborne pathogens. The PulseNet standardized PFGE protocols are developed through a comprehensive testing process. The reproducibility of the protocol undergoes an internal evaluation at the Centers for Disease Control and Prevention and an external evaluation in multiple PulseNet laboratories. Here we describe the development and evaluation of a rapid PFGE protocol for subtyping Vibrio parahaemolyticus for use in PulseNet activities. The protocol was derived from the existing standardized PulseNet protocols for Escherichia coli O157:H7 and Vibrio cholerae. An external evaluation of this protocol was undertaken in collaboration with three PulseNet USA participating public health laboratories. Comparative analysis of the PFGE fingerprints generated by each of these laboratories demonstrated that the protocol is both reliable and reproducible in the hands of multiple users.
Collapse
Affiliation(s)
- M B Parsons
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 2007; 20:39-48. [PMID: 17223622 PMCID: PMC1797631 DOI: 10.1128/cmr.00025-06] [Citation(s) in RCA: 395] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is recognized as a cause of food-borne gastroenteritis, particularly in the Far East, where raw seafood consumption is high. An unusual increase in admissions of V. parahaemolyticus cases was observed at the Infectious Diseases Hospital in Calcutta, a city in the northeastern part of India, beginning February 1996. Analysis of the strains revealed that a unique serotype, O3:K6, not previously isolated during the surveillance in Calcutta accounted for 50 to 80% of the infections in the following months. After this report, O3:K6 isolates identical to those isolated in Calcutta were reported from food-borne outbreaks and from sporadic cases in Bangladesh, Chile, France, Japan, Korea, Laos, Mozambique, Peru, Russia, Spain, Taiwan, Thailand, and the United States. Other serotypes, such as O4:K68, O1:K25, and O1:KUT (untypeable), that had molecular characteristics identical to that of the O3:K6 serotype were subsequently documented. These serotypes appeared to have diverged from the O3:K6 serotype by alteration of the O:K antigens and were defined as "serovariants" of the O3:K6 isolate. O3:K6 and its serovariants have now spread into Asia, America, Africa, and Europe. This review traces the genesis, virulence features, molecular characteristics, serotype variants, environmental occurrence, and global spread of this unique clone of V. parahaemolyticus.
Collapse
Affiliation(s)
- G Balakrish Nair
- Enteric Microbiology Unit, Laboratory Sciences Division, ICDDR,B: Center for Health and Population Research, Mohakhali, Dhaka 1212, Bangladesh.
| | | | | | | | | | | |
Collapse
|
12
|
Wong HC, Liu SH, Chiou CS, Nishibuchi M, Lee BK, Suthienkul O, Nair GB, Kaysner CA, Taniguchi H. A pulsed-field gel electrophoresis typing scheme for Vibrio parahaemolyticus isolates from fifteen countries. Int J Food Microbiol 2007; 114:280-7. [PMID: 17161487 DOI: 10.1016/j.ijfoodmicro.2006.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/27/2006] [Accepted: 09/30/2006] [Indexed: 11/30/2022]
Abstract
Vibrio parahaemolyticus is an important foodborne pathogen in Taiwan and many other maritime Asian countries where seafood is frequently consumed. A total of 535 strains of V. parahaemolyticus were recovered mostly (97%) from clinical samples obtained in Taiwan or in 14 other countries. These strains were typed by pulsed-field gel electrophoresis following SfiI digestion and a typing scheme was generated. The 115 different patterns identified were grouped into 13 types with dissimilarity values less than 15, plus 16 miscellaneous patterns not grouped into any of the types. Types I, A, D and J contained the most patterns, with the numbers of patterns being 17, 13, 12, and 11, respectively. However, types I, B, D, A, H and C contained the most strains, with the numbers of strains being 204, 73, 71, 54, 29 and 25, respectively. Type I consisted exclusively of the pandemic O3:K6 strains and genetically closely related strains. This PFGE typing scheme for V. parahaemolyticus could be used for the characterization of pathogenic isolates.
Collapse
Affiliation(s)
- Hin-chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Meador CE, Parsons MM, Bopp CA, Gerner-Smidt P, Painter JA, Vora GJ. Virulence gene- and pandemic group-specific marker profiling of clinical Vibrio parahaemolyticus isolates. J Clin Microbiol 2007; 45:1133-9. [PMID: 17301274 PMCID: PMC1865801 DOI: 10.1128/jcm.00042-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vibrio parahaemolyticus is a halophilic bacterium capable of causing food- and waterborne gastroenteritis, wound infections, and septicemia in humans. The organism has recently received increasing attention, as the emergence of a new clone, V. parahaemolyticus O3:K6, has resulted in the first documented pandemic spread of V. parahaemolyticus. We used microarray analyses to explore the presence of known virulence factors and genetic markers thought to be specific for V. parahaemolyticus O3:K6 and its clonal derivatives. Analyses of 48 human clinical isolates collected between 1997 and 2005 revealed that the V. parahaemolyticus chromosome 2 type III secretion system is not specifically associated with pandemic strains and can be found in tdh-negative (i.e., Kanagawa-negative) clinical isolates. These results highlight the genetic dynamism of V. parahaemolyticus and aid in refining the genetic definition of the pandemic group members.
Collapse
Affiliation(s)
- Carolyn E Meador
- Naval Research Laboratory, Center for Bio/Molecular Science & Engineering, 4555 Overlook Avenue SW, Bldg. 30, Code 6910, Washington, DC 20375, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Hurley CC, Quirke A, Reen FJ, Boyd EF. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 2006; 7:104. [PMID: 16672049 PMCID: PMC1464126 DOI: 10.1186/1471-2164-7-104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 05/03/2006] [Indexed: 11/23/2022] Open
Abstract
Background Vibrio parahaemolyticus is an aquatic, halophilic, Gram-negative bacterium, first discovered in 1950 in Japan during a food-poisoning outbreak. Infections resulting from consumption of V. parahaemolyticus have increased globally in the last 10 years leading to the bacterium's classification as a newly emerging pathogen. In 1996 the first appearance of a pandemic V. parahaemolyticus clone occurred, a new O3:K6 serotype strain that has now been identified worldwide as a major cause of seafood-borne gastroenteritis. Results We examined the sequenced genome of V. parahaemolyticus RIMD2210633, an O3:K6 serotype strain isolated in Japan in 1996, by bioinformatic analyses to uncover genomic islands (GIs) that may play a role in the emergence and pathogenesis of pandemic strains. We identified 7 regions ranging in size from 10 kb to 81 kb that had the characteristics of GIs such as aberrant base composition compared to the core genome, presence of phage-like integrases, flanked by direct repeats and the absence of these regions from closely related species. Molecular analysis of worldwide clinical isolates of V. parahaemolyticus recovered over the last 33 years demonstrated that a 24 kb region named V. parahaemolyticus island-1 (VPaI-1) encompassing ORFs VP0380 to VP0403 is only present in new O3:K6 and related strains recovered after 1995. We investigated the presence of 3 additional regions, VPaI-4 (VP2131 to VP2144), VPaI-5 (VP2900 to VP2910) and VPaI-6 (VPA1254 to VPA1270) by PCR assays and Southern blot analyses among the same set of V. parahaemolyticus isolates. These 3 VPaI regions also gave similar distribution patterns amongst the 41 strains examined. Conclusion The 4 VPaI regions examined may represent DNA acquired by the pandemic group of V. parahaemolyticus isolates that increased their fitness either in the aquatic environment or in their ability to infect humans.
Collapse
Affiliation(s)
- Catherine C Hurley
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - AnneMarie Quirke
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - F Jerry Reen
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - E Fidelma Boyd
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|