1
|
Derebasi BN, Davran Bulut S, Aksoy Erden B, Sadeghian N, Taslimi P, Celebioglu HU. Effects of p-coumaric acid on probiotic properties of Lactobacillus acidophilus LA-5 and lacticaseibacillus rhamnosus GG. Arch Microbiol 2024; 206:223. [PMID: 38642150 DOI: 10.1007/s00203-024-03957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Probiotics are defined as "live microorganisms that provide health benefits to the host when administered in adequate amounts." Probiotics have beneficial effects on human health, including antibacterial activity against intestinal pathogens, regulation of blood cholesterol levels, reduction of colitis and inflammation incidence, regulation of the immune system, and prevention of colon cancer. In addition to probiotic bacteria, some phenolic compounds found in foods we consume (both food and beverages) have positive effects on human health. p-coumaric acid (p-CA) is one of the most abundant phenolic compounds in nature and human diet. The interactions between these two different food components (phenolics and probiotics), resulting in more beneficial combinations called synbiotics, are not well understood in terms of how they will affect the gut microbiota by promoting the probiotic properties and growth of probiotic bacteria. Thus, this study aimed to investigate synbiotic relationship between p-CA and Lactobacillus acidophilus LA-5 (LA-5), Lacticaseibacillus rhamnosus GG (LGG). Probiotic bacteria were grown in the presence of p-CA at different concentrations, and the effects of p-CA on probiotic properties, as well as its in vitro effects on AChE and BChE activities, were investigated. Additionally, Surface analysis was conducted using FTIR. The results showed that treatment with p-CA at different concentrations did not exhibit any inhibitory effect on the growth kinetics of LA-5 and LGG probiotic bacteria. Additionally, both probiotic bacteria demonstrated high levels of antibacterial properties. It showed that it increased the auto-aggregation of both probiotics. While p-CA increased co-aggregation of LA-5 and LGG against Escherichia coli, it decreased co-aggregation against Staphylococcus aureus. Probiotics grown with p-CA were more resistant to pepsin. While p-CA increased the resistance of LA-5 to bile salt, it decreased the resistance of LGG. The combinations of bacteria and p-CA efficiently suppressed AChE and BChE with inhibition (%) 11.04-68.43 and 13.20-65.72, respectively. Furthermore, surface analysis was conducted using FTIR to investigate the interaction of p-coumaric acid with LA-5 and LGG, and changes in cell components on the bacterial surface were analyzed. The results, recorded in range of 4000 -600 cm-1 with resolution of 4 cm-1, demonstrated that p-CA significantly affected only the phosphate/CH ratio for both bacteria. These results indicate the addition of p-CA to the probiotic growth may enhance the probiotic properties of bacteria.
Collapse
Affiliation(s)
- Buse Nur Derebasi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Sena Davran Bulut
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Busra Aksoy Erden
- Central Research Laboratory Application and Research Center, Bartin University, Bartin, Turkey
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | | |
Collapse
|
2
|
Liu L, Xie S, Zhu Y, Zhao H, Zhang B. Sodium carboxymethyl celluloses as a cryoprotectant for survival improvement of lactic acid bacterial strains subjected to freeze-drying. Int J Biol Macromol 2024; 260:129468. [PMID: 38242412 DOI: 10.1016/j.ijbiomac.2024.129468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
This study investigated the possibility of sodium carboxymethyl celluloses (Na-CMC) in protecting the viability of lactic acid bacteria (LAB) against freeze-drying stress. 1 % concentration of Na-CMC with a 0.7 substitution degree and viscosity of 1500 to 3100 (MPa.s) was found to protect Lactobacillus delbrueckii subsp. bulgaricus CICC 6098 best, giving a high survival rate of 23.19 ± 0.88 %, high key enzymatic activities, and 28-day storage stability. Additionally, Na-CMC as cryoprotectant provided good protection for other 7 lactic acid bacterial strains subjected to freeze-drying. The highest survival rate was 48.79 ± 0.20 U/mg for β-GAL, 2.75 ± 0.15 U/mg for Na+-K+-ATPase, and 2.73 ± 0.41 U/mg for Ca2+-Mg2+-ATPase as 48.48 ± 0.46 % for freeze-dried Pediococcus pentosaceus CICC 22228. It was Interesting to note that the presence of Na-CMC reduced the freezable water content of the lyophilized powders containing the tested strains through its hydroxyl group, and supplied micro-holes and fibers for protecting the integrated structure of LAB cell membrane and wall against the freezing damage. It is clear that addition of Na-CMC should be promising as a new cryoprotective agent available for processing the lyophilized stater cultures of LAB strains.
Collapse
Affiliation(s)
- Lu Liu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Shanshan Xie
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yadong Zhu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Coronas R, Zara G, Gallo A, Rocchetti G, Lapris M, Petretto GL, Zara S, Fancello F, Mannazzu I. Propionibacteria as promising tools for the production of pro-bioactive scotta: a proof-of-concept study. Front Microbiol 2023; 14:1223741. [PMID: 37588883 PMCID: PMC10425813 DOI: 10.3389/fmicb.2023.1223741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Dairy propionibacteria are Gram positive Actinomycetota, routinely utilized as starters in Swiss type cheese making and highly appreciated for their probiotic properties and health promoting effects. In this work, within the frame of a circular economy approach, 47 Propionibacterium and Acidipropionibacterium spp. were isolated from goat cheese and milk, and ewe rumen liquor, and characterized in view of their possible utilization for the production of novel pro-bioactive food and feed on scotta, a lactose rich substrate and one of the main by-products of the dairy industry. The evaluation of the Minimum Inhibitory Concentration (MIC) of 13 among the most common antibiotics in clinical practice revealed a general susceptibility to ampicillin, gentamycin, streptomycin, vancomycin, chloramphenicol, and clindamycin while confirming a lower susceptibility to aminoglycosides and ciprofloxacin. Twenty-five isolates, that proved capable of lactose utilization as the sole carbon source, were then characterized for functional and biotechnological properties. Four of them, ascribed to Propionibacterium freudenreichii species, and harboring resistance to bile salts (growth at 0.7-1.56 mM of unconjugated bile salts), acid stress (>80% survival after 1 h at pH 2), osmostress (growth at up to 6.5% NaCl) and lyophilization (survival rate > 80%), were selected and inoculated in scotta. On this substrate the four isolates reached cell densities ranging from 8.11 ± 0.14 to 9.45 ± 0.06 Log CFU mL-1 and proved capable of producing different vitamin B9 vitamers after 72 h incubation at 30°C. In addition, the semi-quantitative analysis following the metabolomics profiling revealed a total production of cobalamin derivatives (vitamin B12) in the range 0.49-1.31 mg L-1, thus suggesting a full activity of the corresponding biosynthetic pathways, likely involving a complex interplay between folate cycle and methylation cycle required in vitamin B12 biosynthesis. These isolates appear interesting candidates for further ad-hoc investigation regarding the production of pro-bioactive scotta.
Collapse
Affiliation(s)
- Roberta Coronas
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Lapris
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Wang L, Huang G, Ma W, Jin G. Preparation and Application of Directed Vat Set Indigenous Freeze-Drying Lentilactobacillus hilgardii Q19 Starter in Winemaking. Foods 2023; 12:foods12051053. [PMID: 36900570 PMCID: PMC10000753 DOI: 10.3390/foods12051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
In order to prepare a better direct vat set for malolactic fermentation (MLF) in high ethanol and low pH wines, the high-ethanol- and low-temperature-tolerant strain Lentilactobacillus hilgardii Q19, which was isolated from the eastern foothill of the Helan Mountain wine region in China, was used to prepare a direct vat set by vacuum freeze-drying. A superior freeze-dried lyoprotectant was obtained to create the starting culture by selecting, combining, and optimizing numerous lyoprotectants with higher protection for Q19 by using a single-factor experiment and response surface approach. Finally, the Lentilactobacillus hilgardii Q19 direct vat set was inoculated in Cabernet Sauvignon wine to carry out MLF on a pilot scale, with commercial starter culture Oeno1 as control. The volatile compounds, biogenic amines, and ethyl carbamate content were analyzed. The results showed that a combination of 8.5 g/100 mL skimmed milk powder, 14.5 g/100 mL yeast extract powder, and 6.0 g/100 mL sodium hydrogen glutamate offered better protection; with this lyoprotectant, there were (4.36 ± 0.34) × 1011 CFU/g cells after freeze-drying, and it showed an excellent ability to degrade L-malic acid and could successfully finish MLF. In addition, in terms of aroma and wine safety, compared with Oeno1, the quantity and complexity of volatile compounds were increased after MLF, and biogenic amines and ethyl carbamate were produced less during MLF. We conclude that the Lentilactobacillus hilgardii Q19 direct vat set could be applied as a new MLF starter culture in high-ethanol wines.
Collapse
Affiliation(s)
- Ling Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Gang Huang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China
| | - Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China
- Correspondence:
| |
Collapse
|
5
|
The Effect of a Glutathione (GSH)-Containing Cryo-Protectant on the Viability of Probiotic Cells Using a Freeze-Drying Process. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Lactic acid bacteria (LAB) and probiotics promise specific health benefits to their host. However, good storage stability is a prerequisite for their functioning and industrial use. This study aimed to evaluate glutathione (GSH) as a potential protective agent for improving microbial stability deteriorated by freeze-drying, freeze-thawing, and cold treatments. In this study, the optimal concentration of glutathione (50% w/w) was 1%, showing effective protection on the viability and stability of various LAB strains (Lactiplantibacillus plantarum MG4229 and MG4296, Lactococcus lactis MG5125, Limosilactobacillus fermentum MG4295, Lacticaseibacillus paracasei MG5012, and Bifidobacterium animalis ssp. lactis MG741). Glutathione-containing protectants considerably improved the viability of all of these strains after freeze-drying compared with non-coated probiotics. Survivability in the gastrointestinal (GI) tract, accelerated stability tests, and adhesion assays on intestinal epithelial cells were performed to determine whether glutathione enhances bacterial stability. Based on morphological observations, protectants containing GSH were coated onto the cell surface, resulting in effective protection against multiple external stress stimuli. The applicability of GSH as a new and effective protective agent can improve the stability and viability of various probiotics with anti-freezing and anti-thawing effects.
Collapse
|
6
|
Bi K, Liu Y, Xin W, Yang J, Zhang B, Zhang Z. Combined treatment of ε-polylysine and heat damages protective structures and spore inner membranes to inactivate Bacillus subtilis spores. Food Microbiol 2023; 109:104137. [DOI: 10.1016/j.fm.2022.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
|
7
|
Fructose-induced topographical changes in fructophilic, pseudofructophilic and non-fructophilic lactic acid bacterial strains with genomic comparison. World J Microbiol Biotechnol 2023; 39:73. [PMID: 36627394 DOI: 10.1007/s11274-022-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023]
Abstract
Fructophilic Lactic Acid Bacteria (FLAB), Fructobacillus fructosus DPC7238 and pseudofructophilic Leuconostoc mesenteroides DPC7261 and non-FLAB Limosilactobacillus reuteri DSM20016 strains were studied for their growth and morphological evolution as a function of increased fructose concentrations (0, 25, and 50% w/v) in the media. A comparison of the genomics of these strains was carried out to relate observed changes and understand fructose-rich adaptations. The viability of FLAB strains were reduced by approx. 50% at a 50% fructose concentration, while the Limosilactobacillus reuteri strain was reduced to approx. 98%. Electron microscopy demonstrated that FLAB strain, Fructobacillus. fructosus and pseudofructophilic Leuc. mesenteroides, were intact but expanded in the presence of high fructose in the medium. Limosilactobacillus reuteri, on the other hand, ruptured as a result of excessive elongation, resulting in the formation of cell debris when the medium contained more than 25% (w/v) fructose. This was entirely and quantitatively corroborated by three-dimensional data obtained by scanning several single cells using an atomic force microscope. The damage caused the bacterial envelope to elongate lengthwise, thus increasing width size and lower height. The cell surface became comparatively smoother at 25% fructose while rougher at 50% fructose, irrespective of the strains. Although Fructobacillus fructosus was highly fructose tolerant and maintained topological integrity, it had a comparatively smaller genome than pseudofructophilic Leuc. mesenteroides. Further, COG analysis identified lower but effective numbers of genes in fructose metabolism and transport of Fructobacillus fructosus, essentially needed for adaptability in fructose-rich niches.
Collapse
|
8
|
Effect of Trehalose and Lactose Treatments on the Freeze-Drying Resistance of Lactic Acid Bacteria in High-Density Culture. Microorganisms 2022; 11:microorganisms11010048. [PMID: 36677339 PMCID: PMC9866448 DOI: 10.3390/microorganisms11010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Freeze-drying is a commonly used method in commercial preparations of lactic acid bacteria. However, some bacteria are killed during the freeze-drying process. To overcome this, trehalose and lactose are often used as protective agents. Moreover, high-density culture is an efficient way to grow bacterial strains but creates a hypertonic growth environment. We evaluated the effects of trehalose and lactose, as a primary carbon source or as an additive in fermentation, on the freeze-drying survival of Lactobacillus fermentum FXJCJ6-1, Lactobacillus brevis 173-1-2, and Lactobacillus reuteri CCFM1040. Our results showed that L. fermentum FXJCJ6-1 accumulated but did not use intracellular trehalose in a hypertonic environment, which enhanced its freeze-drying resistance. Furthermore, genes that could transport trehalose were identified in this bacterium. In addition, both the lactose addition and lactose culture improved the freeze-drying survival of the bacterium. Further studies revealed that the added lactose might exert its protective effect by attaching to the cell surface, whereas lactose culture acted by reducing extracellular polysaccharide production and promoting the binding of the protectant to the cell membrane. The different mechanisms of lactose and trehalose in enhancing the freeze-drying resistance of bacteria identified in this study will help to elucidate the anti-freeze-drying mechanisms of other sugars in subsequent investigations.
Collapse
|
9
|
Cui S, Hu K, Qian Z, Mao B, Zhang Q, Zhao J, Tang X, Zhang H. Improvement of Freeze-Dried Survival of Lactiplantibacillus plantarum Based on Cell Membrane Regulation. Microorganisms 2022; 10:microorganisms10101985. [PMID: 36296261 PMCID: PMC9608830 DOI: 10.3390/microorganisms10101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The cell membrane of Lactiplantibacillus plantarum is a key structure for cell survival. In this study, we aimed to improve the lyophilization resistance of L. plantarum by regulating the cell membrane structure. Unsaturated fatty acids or cell membrane-regulating substances were added during culturing to determine their effect on the composition of cell membrane fatty acids and the survival rate of the cells after freeze-drying. The results showed that Tween 80, β-carotene and melatonin increased the lyophilization survival rate of L. plantarum by 9.44, 14.53, and 18.34%, respectively. After adding a lyophilization protective agent at a concentration of 21.49% at a 1:1 ratio, a combination of Tween 80, melatonin, and β-carotene was added to regulate the cell membrane, which increased the lyophilization survival rate by 32.08–86.05%. This study proposes new research directions and ideas for improving the survival rate of probiotics for industrial production.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kai Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhihao Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Microencapsulating role of whey protein isolate and sucrose in protecting the cell membrane and enhancing survival of probiotic lactobacilli strains during spray drying, storage, and simulated gastrointestinal passage. Food Res Int 2022; 159:111651. [DOI: 10.1016/j.foodres.2022.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
|
11
|
Hu D, Wu J, Li J, Jin L, Chen X, Yao J. Effect of isomaltose oligosaccharide on the freeze-drying process and shelf-life of Pediococcus pentosaceus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Exploring the integrity of cellular membrane and resistance to digestive juices of dehydrated lactic acid bacteria as influenced by drying kinetics. Food Res Int 2022; 157:111395. [DOI: 10.1016/j.foodres.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
|
13
|
Cheng Z, He X, Wu Z, Weng P. Improving the viability of powdered Lactobacillus fermentum Lf01 with complex lyoprotectants by maintaining cell membrane integrity and regulating related genes. J Food Biochem 2022; 46:e14181. [PMID: 35393671 DOI: 10.1111/jfbc.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
In this study, Lactobacillus fermentum Lf01, which was screened out in the early stage of the experiment, had better fermentation performance as the research objectives, and was prepared into powder by vacuum freeze-drying technology. We used response surface methodology to optimize the composition of the mixture used to protect powdered L. fermentum. Our data demonstrated that 10% skim milk, 12% sucrose, 0.767% tyrosine, and 2.033% sorbitol ensured the highest survival rate (92.7%) of L. fermentum. We have initially explored the potential mechanism of the complex protectants through the protection effect under the electron microscope, and the analysis methods of Fourier transform infrared spectroscopy and transcriptomics. The complex protectants could effectively maintain the permeability barrier and structural integrity of cell membrane and avoid the leakage of cell contents. Transcriptomic data have also indicated that the protective effect of the complex protectants on bacteria during freeze-drying was most likely achieved through the regulation of related genes. We identified 240 differential genes in the treatment group, including 231 up-regulated genes and 9 down-regulated genes. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analyses of differential expression genes (DEGs) indicated that genes involved in amino acid metabolism, carbohydrate metabolism, membrane transport, fatty acid biosynthesis and cell growth were significantly up-regulated. These new results provided novel insights into the potential mechanism of lyoprotectants at the cellular level, morphological level, and gene level of the bacteria. PRACTICAL APPLICATIONS: In our study, a strain of Lactobacillus fermentum Lf01 with good fermentation performance was selected to be prepared into powder by freeze-drying technique. Bacterial cells were unavoidably damaged during the freeze-drying process. As a result, we investigated the protective effects on L. fermentum of ten distinct freeze-dried protectants and their mixtures. We were also attempting to explain the mechanism of action of the complex protectants at the cellular level, morphological level, and gene level of the bacteria. This presents very important theoretical and practical significance for the preservation of strains and the production of commercial direct-investment starter.
Collapse
Affiliation(s)
- Ziyi Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Xiaoli He
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
14
|
Wang R, Sun R, Yang Y, E J, Yao C, Zhang Q, Chen Z, Ma R, Li J, Zhang J, Wang J. Effects of salt stress on the freeze-drying survival rate of Lactiplantibacillus plantarum LIP-1. Food Microbiol 2022; 105:104009. [DOI: 10.1016/j.fm.2022.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022]
|
15
|
The extent and mechanism of the effect of protectant material in the production of active lactic acid bacteria powder using spray drying: A review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Kubbutat P, Kulozik U, Dombrowski J. Influence of interfacial characteristics and dielectric properties on foam structure preservation during microwave-assisted vacuum drying of whey protein isolate-maltodextrin dispersions. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
E J, Chen J, Chen Z, Ma R, Zhang J, Yao C, Wang R, Zhang Q, Yang Y, Li J, Wang J. Effects of different initial pH values on freeze-drying resistance of Lactiplantibacillus plantarum LIP-1 based on transcriptomics and proteomics. Food Res Int 2021; 149:110694. [PMID: 34600689 DOI: 10.1016/j.foodres.2021.110694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
The growth and the resistance to adverse environments of lactic acid bacteria would be affected by adjusting the initial pH of the medium. In order to explore the effect of changing the initial pH of culture medium on the freeze-drying survival rate of the Lactiplantibacillus plantarum LIP-1, the effect of initial pH on cell membrane fatty acid composition and key enzyme activity were mainly determined, and the internal mechanism was studied by transcriptomics and proteomics methods. We found that compared with initial pH 7.4 group, initial pH 6.8 group could improve the freeze-drying survival rate of the L. plantarum LIP-1. It was possibly due to the lactate dehydrogenase (LDH) was upregulated in the initial pH6.8 group, which led to a rapid decrease in culture pH. To reduce the inhibitory effect of long-term acid environment on growth, the strain upregulated the expression of fatty acid synthesis-related genes and proteins, promoted the relative content of cyclopropane and unsaturated fatty acids, improved integrity of the cell membranes. The adjustment of fatty acid composition maintained the integrity of the cell membrane in a freeze-drying environment to improve the freeze-drying survival rate of the initial pH6.8 group. In addition, the long-term acid environment stimulated a cross-stress tolerance mechanism that significantly upregulated the expression of a cold stress protein. The results indicated that the optimal initial pH of the medium could improve the ability of L. plantarum LIP-1 to resist freeze-drying.
Collapse
Affiliation(s)
- Jingjing E
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jing Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zichao Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Rongze Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jingya Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Caiqing Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Ruixue Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Qiaoling Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Ying Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jing Li
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Junguo Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
18
|
Kubbutat P, Kulozik U, Dombrowski J. Foam Structure Preservation during Microwave-Assisted Vacuum Drying: Significance of Interfacial and Dielectric Properties of the Bulk Phase of Foams from Polysorbate 80-Maltodextrin Dispersions. Foods 2021; 10:foods10061163. [PMID: 34067254 PMCID: PMC8224648 DOI: 10.3390/foods10061163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed at examining the cause of differences in the structure preservation of polysorbate 80–maltodextrin foams during microwave-assisted vacuum drying (MWVD) versus conventional vacuum drying (CVD). Aqueous dispersions of 3% polysorbate 80 and 0–40% maltodextrin were characterized for their dielectric and interfacial properties, and results were related to their drying performance in a foamed state. Surface tension and surface dilatational properties as well as dielectric properties clearly responded to the variation in the maltodextrin content. Likewise, the foam structure preservation during CVD was linked to the maltodextrin concentration. Regarding MWVD, however, foams collapsed at all conditions tested. Nevertheless, if the structure during MWVD remained stable, the drying time was significantly reduced. Eventually, this finding could be linked to the dielectric properties of polysorbate 80 rather than its adsorption kinetics and surface film viscoelasticity as its resonant frequency fell within the working frequency of the microwave drying plant.
Collapse
Affiliation(s)
- Peter Kubbutat
- Chair of Food and Bioprocess Engineering, TUM School of Life Science, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany; (U.K.); (J.D.)
- Correspondence:
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, TUM School of Life Science, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany; (U.K.); (J.D.)
| | - Jannika Dombrowski
- Chair of Food and Bioprocess Engineering, TUM School of Life Science, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany; (U.K.); (J.D.)
- Nestlé Research, Société des Produits Nestlé SA, Route du Jorat 57, 1000 Lausanne, Switzerland
| |
Collapse
|
19
|
Zhao L, Kristi N, Ye Z. Atomic force microscopy in food preservation research: New insights to overcome spoilage issues. Food Res Int 2020; 140:110043. [PMID: 33648269 DOI: 10.1016/j.foodres.2020.110043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
A higher level of food safety is required due to the fast-growing human population along with the increased awareness of healthy lifestyles. Currently, a large percentage of food is spoiled during storage and processing due to enzymes and microbial activity, causing huge economic losses to both producers and consumers. Atomic force microscopy (AFM), as a powerful scanning probe microscopy, has been successfully and widely used in food preservation research. This technique allows a non-invasive examination of food products, providing high-resolution images of surface structure and individual polymers as well as the physical properties and adhesion of single molecules. In this paper, detailed applications of AFM in food preservation are reviewed. AFM has been used to provide comprehensive information in food preservation by evaluating the spoilage with its related structure modification. By utilizing AFM imaging and force measurement function, the main mechanisms involved in the loss of food quality and preservation technologies development can be further elucidated. It is also capable of exploring the activities of enzymes and microbes in influencing the quality of food products during storage. AFM provides comprehensive solutions to overcome spoilage issues with its versatile functions and high-throughput outcomes. Further research and development of this novel technique in order to solve integrated problems in food preservation are necessary.
Collapse
Affiliation(s)
- Leqian Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China.
| |
Collapse
|
20
|
Potential of protein-prebiotic as protective matrices on the storage stability of vacuum-dried probiotic Lactobacillus casei. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Bywaters K, Stoker CR, Batista Do Nascimento N, Lemke L. Towards Determining Biosignature Retention in Icy World Plumes. Life (Basel) 2020; 10:life10040040. [PMID: 32316157 PMCID: PMC7235855 DOI: 10.3390/life10040040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
With the discovery of the persistent jets of water being ejected to space from Enceladus, an understanding of the effect of the space environment on potential organisms and biosignatures in them is necessary for planning life detection missions. We experimentally determine the survivability of microbial cells in liquid medium when ejected into vacuum. Epifluorescence microscopy, using a lipid stain, and SEM imaging were used to interrogate the cellular integrity of E. coli after ejected through a pressurized nozzle into a vacuum chamber. The experimental samples showed a 94% decrease in visible intact E. coli cells but showed a fluorescence residue in the shape of the sublimated droplets that indicated the presence of lipids. The differences in the experimental conditions versus those expected on Enceladus should not change the analog value because the process a sample would undergo when ejected into space was representative. E. coli was selected for testing although other cell types could vary physiologically which would affect their response to a vacuum environment. More testing is needed to determine the dynamic range in concentration of cells expected to survive the plume environment. However, these results suggest that lipids may be directly detectable evidence of life in icy world plumes.
Collapse
Affiliation(s)
- Kathryn Bywaters
- SETI Institute, Moffett Field, CA 94043, USA
- Correspondence: (K.B.); (C.R.S.); Tel.: +1-650-604-2295 (K.B.); +1-650-604-6490 (C.R.S.)
| | - Carol R. Stoker
- NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA; (N.B.D.N.J.); (L.L.)
- Correspondence: (K.B.); (C.R.S.); Tel.: +1-650-604-2295 (K.B.); +1-650-604-6490 (C.R.S.)
| | | | - Lawrence Lemke
- NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA; (N.B.D.N.J.); (L.L.)
| |
Collapse
|
22
|
Haiping L, Pei Z, Shuhai Z, Dengyun Z, Herong F, Yi S, Xinqian W. Protective effect of polysaccharides from Pholiota nameko on Lactobacillus casei ATCC 334 subjected to freeze-drying. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Nag A, Waterland M, Janssen P, Anderson R, Singh H. Importance of intact secondary protein structures of cell envelopes and glass transition temperature of the stabilization matrix on the storage stability of probiotics. Food Res Int 2019; 123:198-207. [PMID: 31284968 DOI: 10.1016/j.foodres.2019.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Lactobacillus reuteri LR6 cells were stabilized using a novel combination of wet granulation and fluidized-bed-drying techniques. The stabilized cells were stored at 37 °C and at two water activity (aw) levels (0.11 & 0.30). Superior storage stability was recorded in the lower aw environment, supported by a stronger glassy matrix when skim milk powder was used as the excipient. The initial viable cell populations of the samples stabilized in different matrices ranged from 8.3 to 9.1 log CFU/g. At the end of the storage period, the viable cell populations were reduced to 6.7 to 7.3 log CFU/g at aw 0.11 and to 6.1 to 6.6 CFU/g when the aw was maintained at 0.30. Fourier transform infrared spectroscopic examination of the cell envelopes revealed substantial dissimilarities between samples at the beginning and at the end of the storage period, which indicated alteration in the secondary protein structures of the cell envelope and also correlated well with the loss in cell viability. In milk-powder-based matrices, adjusting the aw to 0.30 resulted in a weaker or no glassy state whereas the same matrices had a high glass transition temperature at aw 0.11. This strong glassy matrix and low aw combination was found to enhance the bacterial stability at the storage temperature of 37 °C. Scanning electron microscopy revealed the formation of corrugated surfaces and blister-type deformations on the cell envelopes during the stabilization process.
Collapse
Affiliation(s)
- Arup Nag
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Mark Waterland
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Patrick Janssen
- Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Rachel Anderson
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Food Nutrition & Health Team, AgResearch Grasslands, Private Bag 11 008, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
24
|
Peng FJ, Hu LX, Pan CG, Ying GG, Van den Brink PJ. Insights into the sediment toxicity of personal care products to freshwater oligochaete worms using Fourier transform infrared spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:296-302. [PMID: 30716664 DOI: 10.1016/j.ecoenv.2019.01.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 05/23/2023]
Abstract
Personal care products (PCPs) are ubiquitous in the environment due to their wide use in daily life. However, there are insufficient sediment toxicity data of PCPs under ecologically relevant conditions. Here we used Fourier transform infrared spectroscopy (FTIR) to investigate the sediment toxicity of triclosan (TCS) and galaxolide (HHCB) to two freshwater benthic macroinvertebrates, Limnodrilus hoffmeisteri and Branchiura sowerbyi, in microcosms containing a diverse biological community. Exposure to 8 µg TCS/g and 100 µg HHCB/g dry weight (dw) sediment induced significant biochemical alterations in the L. hoffmeisteri tissue. 8 µg TCS/g primarily affected proteins and nucleic acid while 100 µg HHCB/g mainly affected proteins and lipids of L. hoffmeisteri. However, 0.8 µg TCS/g and 30 µg HHCB/g did not cause significant subcellular toxicity to L. hoffmeisteri. In contrast, exposure of B. sowerbyi to 30 µg HHCB/g led to significant biochemical changes, including proteins, polysaccharides and lipids. Therefore, B. sowerbyi was more sensitive to sediment-associated HHCB than L. hoffmeisteri. Such effects were significantly enhanced when the HHCB concentration increased to 100 µg/g dw where death of B. sowerbyi occurred. These results demonstrate the application of FTIR spectroscopy to sediment toxicity testing of chemicals to benthic invertebrates with biochemical alterations as endpoints that are more sensitive than standard toxic endpoints (e.g., survival and growth).
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Li-Xin Hu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Chang-Gui Pan
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
25
|
An assessment of antibacterial mode of action of chitosan on Listeria innocua cells using real-time HATR-FTIR spectroscopy. Int J Biol Macromol 2019; 135:386-393. [PMID: 31071397 DOI: 10.1016/j.ijbiomac.2019.05.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 11/23/2022]
Abstract
The antibacterial mode of action of chitosan using real-time, horizontal attenuated total reflectance, Fourier-transform infrared (HATR-FTIR) spectroscopy and transmission electron microscopy (TEM) was investigated. Listeria innocua was treated with chitosan solution. HATR-FTIR revealed an increased lethality and substantially metabolomics response on cell components. The main changes in FTIR and their 2nd derivative spectra were at 1045 cm-1 (carbohydrates in cell wall). Principal component analysis clearly segregated untreated and treated cells. Loadings plot revealed the functional groups in cell wall, cell membrane, phospholipid and protein regions of spectrum that are responsible for the classification of treated and control spectra. Kinetic traces of the metabolomics change suggested that cell wall and cell membrane seemed to be the initial target of the antimicrobial mechanism of chitosan. In agreement with the TEM images, which showed breakage of cell wall integrity. The cell wall, cell membrane, phospholipids, proteins and nucleic acids of FTIR spectral data recorded during the cell inactivation were shown to be linked to the metabolomics cell response in the lethality rate and structure of the cells. This work clearly showed, using HATR-FTIR spectroscopy, how bacteria can change their metabolomics response substantially during the first 45 min of contact time.
Collapse
|
26
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
27
|
Gong P, Sun J, Lin K, Di W, Zhang L, Han X. Changes process in the cellular structures and constituents of Lactobacillus bulgaricus sp1.1 during spray drying. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Bravo-Ferrada BM, Gonçalves S, Semorile L, Santos NC, Brizuela NS, Elizabeth Tymczyszyn E, Hollmann A. Cell surface damage and morphological changes in Oenococcus oeni after freeze-drying and incubation in synthetic wine. Cryobiology 2018; 82:15-21. [DOI: 10.1016/j.cryobiol.2018.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
|
29
|
Gasaluck P, Mahidsanan T. The consequences of implicit factors as cross-protective stresses on freeze-dried Bacillus subtilis SB-MYP-1 with soybean flour during storage. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
van Heereveld L, Merrison J, Nørnberg P, Finster K. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study. ORIGINS LIFE EVOL B 2017; 47:203-214. [PMID: 27461254 DOI: 10.1007/s11084-016-9515-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation of atmospheric transport on Martian dust, which did not significantly alter the metabolic potential of the cells. The high survival potential of skin microbes, which are not among the most robust isolates, clearly underlines the necessity for efficient decontamination protocols and of adequate planetary protection measures. Thus we propose a series of tests to be included into the description of isolates from spacecraft assembly clean rooms in order to assess the forward contamination potential of the specific isolate and to categorize the risk level according to the organisms survival potential. We are aware that the tests that we propose do not exhaust the types of challenges that the microbes would meet on their way and therefore the series of tests is open to being extended.
Collapse
Affiliation(s)
- Luc van Heereveld
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Building 1540, 8000, Aarhus C, Denmark
| | - Jonathan Merrison
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Building 1520, 8000, Aarhus C, Denmark
| | - Per Nørnberg
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Building 1540, 8000, Aarhus C, Denmark
| | - Kai Finster
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Building 1540, 8000, Aarhus C, Denmark.
- Stellar Astrophysics Center, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Building 1520, 8000, Aarhus C, Denmark.
| |
Collapse
|
31
|
A novel soybean flour as a cryoprotectant in freeze-dried Bacillus subtilis SB-MYP-1. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Pan M, Kumaree KK, Shah NP. Physiological Changes of Surface Membrane inLactobacilluswith Prebiotics. J Food Sci 2017; 82:744-750. [DOI: 10.1111/1750-3841.13608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Mingfang Pan
- Food and Nutritional Science, School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| | - Kishore K. Kumaree
- Food and Nutritional Science, School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
- Adjunct Professor; Victoria Univ.; Melbourne Australia
| |
Collapse
|
33
|
Ambros S, Bauer SAW, Shylkina L, Foerst P, Kulozik U. Microwave-Vacuum Drying of Lactic Acid Bacteria: Influence of Process Parameters on Survival and Acidification Activity. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1768-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Meng J, Gong Y, Qian P, Yu JY, Zhang XJ, Lu RR. Combined effects of ultra-high hydrostatic pressure and mild heat on the inactivation of Bacillus subtilis. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Broeckx G, Vandenheuvel D, Claes IJ, Lebeer S, Kiekens F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm 2016; 505:303-18. [DOI: 10.1016/j.ijpharm.2016.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
|
36
|
Iaconelli C, Lemetais G, Kechaou N, Chain F, Bermúdez-Humarán LG, Langella P, Gervais P, Beney L. Drying process strongly affects probiotics viability and functionalities. J Biotechnol 2015; 214:17-26. [PMID: 26325197 DOI: 10.1016/j.jbiotec.2015.08.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/22/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022]
Abstract
Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria.
Collapse
Affiliation(s)
- Cyril Iaconelli
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne, AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Guillaume Lemetais
- Merck Medication Familiale, 18C boulevard Winston Churchill, 21000 Dijon, France
| | - Noura Kechaou
- Institut MICALIS, UMR 1319, Domaine de Vilvert, 78352 Jouy en Josas, France
| | - Florian Chain
- Institut MICALIS, UMR 1319, Domaine de Vilvert, 78352 Jouy en Josas, France
| | | | - Philippe Langella
- Institut MICALIS, UMR 1319, Domaine de Vilvert, 78352 Jouy en Josas, France
| | - Patrick Gervais
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne, AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Laurent Beney
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne, AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France.
| |
Collapse
|
37
|
Santos MI, Gerbino E, Tymczyszyn E, Gomez-Zavaglia A. Applications of Infrared and Raman Spectroscopies to Probiotic Investigation. Foods 2015; 4:283-305. [PMID: 28231205 PMCID: PMC5224548 DOI: 10.3390/foods4030283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 11/16/2022] Open
Abstract
In this review, we overview the most important contributions of vibrational spectroscopy based techniques in the study of probiotics and lactic acid bacteria. First, we briefly introduce the fundamentals of these techniques, together with the main multivariate analytical tools used for spectral interpretation. Then, four main groups of applications are reported: (a) bacterial taxonomy (Subsection 4.1); (b) bacterial preservation (Subsection 4.2); (c) monitoring processes involving lactic acid bacteria and probiotics (Subsection 4.3); (d) imaging-based applications (Subsection 4.4). A final conclusion, underlying the potentialities of these techniques, is presented.
Collapse
Affiliation(s)
- Mauricio I Santos
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), 1900 La Plata, Argentina.
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), 1900 La Plata, Argentina.
| | - Elizabeth Tymczyszyn
- Laboratory for Molecular Microbiology, Department of Food Science and Technology, National University of Quilmes, 1876 Buenos Aires, Argentina.
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), 1900 La Plata, Argentina.
| |
Collapse
|
38
|
Bravo-Ferrada B, Gonçalves S, Semorile L, Santos N, Tymczyszyn E, Hollmann A. Study of surface damage on cell envelope assessed by AFM and flow cytometry of Lactobacillus plantarum
exposed to ethanol and dehydration. J Appl Microbiol 2015; 118:1409-17. [DOI: 10.1111/jam.12796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/28/2022]
Affiliation(s)
- B.M. Bravo-Ferrada
- Laboratorio de Microbiología Molecular; Instituto de Microbiología Básica y Aplicada (IMBA); Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
| | - S. Gonçalves
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - L. Semorile
- Laboratorio de Microbiología Molecular; Instituto de Microbiología Básica y Aplicada (IMBA); Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
| | - N.C. Santos
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - E.E. Tymczyszyn
- Laboratorio de Microbiología Molecular; Instituto de Microbiología Básica y Aplicada (IMBA); Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
- CONICET; Buenos Aires Argentina
| | - A. Hollmann
- Laboratorio de Microbiología Molecular; Instituto de Microbiología Básica y Aplicada (IMBA); Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
- Laboratory of Biointerfaces and Biomimetic Systems; CITSE-University of Santiago del Estero-CONICET; Santiago del Estero Argentina
- CONICET; Buenos Aires Argentina
| |
Collapse
|
39
|
Fuchs RHB, Ribeiro RP, Matsushita M, Tanamati AAC, Canan C, Bona E, Marques LLM, Droval AA. Chemical, sensory and microbiological stability of freeze-dried Nile tilapia croquette mixtures. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1014431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Nivoliez A, Veisseire P, Alaterre E, Dausset C, Baptiste F, Camarès O, Paquet-Gachinat M, Bonnet M, Forestier C, Bornes S. Influence of manufacturing processes on cell surface properties of probiotic strain Lactobacillus rhamnosus Lcr35®. Appl Microbiol Biotechnol 2014; 99:399-411. [PMID: 25280746 DOI: 10.1007/s00253-014-6110-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 01/26/2023]
Abstract
The influence of the industrial process on the properties of probiotics, administered as complex manufactured products, has been poorly investigated. In the present study, we comparatively assessed the cell wall characteristics of the probiotic strain Lactobacillus rhamnosus Lcr35® together with three of its commercial formulations with intestinal applications. Putative secreted and transmembrane-protein-encoding genes were initially searched in silico in the genome of L. rhamnosus Lcr35®. A total of 369 candidate genes were identified which expressions were followed using a custom Lactobacillus DNA chip. Among them, 60 or 67 genes had their expression either upregulated or downregulated in the Lcr Restituo® packet or capsule formulations, compared to the native Lcr35® strain. Moreover, our data showed that the probiotic formulations (Lcr Lenio®, Lcr restituo® capsule and packet) showed a better capacity to adhere to intestinal epithelial Caco-2 cells than the native Lcr35® strain. Microbial (MATS) tests showed that the probiotic was an electron donor and that they were more hydrophilic than the native strain. The enhanced adhesion capacity of the active pharmaceutical ingredients (APIs) to epithelial Caco-2 cells and their antipathogen effect could be due to this greater surface hydrophilic character. These findings suggest that the manufacturing process influences the protein composition and the chemical properties of the cell wall. It is therefore likely that the antipathogen effect of the formulation is modulated by the industrial process. Screening of the manufactured products' properties would therefore represent an essential step in evaluating the effects of probiotic strains.
Collapse
Affiliation(s)
- Adrien Nivoliez
- Département Recherche et Développement-Probionov, Rue des frères Lumières, 15130, Arpajon-sur-Cère, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kardas M, Gozen AG, Severcan F. FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:15-23. [PMID: 24964200 DOI: 10.1016/j.aquatox.2014.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
High concentrations of heavy metals can be toxic for bacteria. However, after prolonged exposure, bacteria can become acclimated and begin to be able to grow in the presence of heavy metals. Acclimation can involve alterations of metabolism and molecular structures. Our aim was to examine these alterations in cobalt-acclimated bacteria via attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy on viable samples. Bacillus sp. and Pseudomonas sp. isolated from a temperate shallow lake and a well-established strain of E. coli were investigated. Our results revealed consistent, wide-spread changes in cell membrane and cell wall dynamics of Bacillus sp. and E. coli, including a decrease in peptidoglycan content of Bacillus sp. and increased lipid ordering of the membrane in both bacteria. Furthermore, a decrease in RNA and protein concentrations of Bacillus sp. was measured. All three bacteria studied showed a decrease in conformational freedom of proteins following cobalt acclimation. Interestingly, both Bacillus sp. and E. coli showed slight but significant alterations in their DNA conformations which might imply a methylation-mediated memory formation leading to epigenetic modulation for cobalt adaptation.
Collapse
Affiliation(s)
- Mehmet Kardas
- Middle East Technical University, Biological Sciences, Microbial Ecology Laboratory and Biophysics Laboratory, Ankara 06800, Turkey
| | - Ayse Gul Gozen
- Middle East Technical University, Biological Sciences, Microbial Ecology Laboratory and Biophysics Laboratory, Ankara 06800, Turkey.
| | - Feride Severcan
- Middle East Technical University, Biological Sciences, Microbial Ecology Laboratory and Biophysics Laboratory, Ankara 06800, Turkey
| |
Collapse
|
42
|
Gandhi A, Cui Y, Zhou M, Shah NP. Effect of KCl substitution on bacterial viability of Escherichia coli (ATCC 25922) and selected probiotics. J Dairy Sci 2014; 97:5939-51. [DOI: 10.3168/jds.2013-7681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/14/2014] [Indexed: 11/19/2022]
|
43
|
Effects of salt concentration and pH on structural and functional properties of Lactobacillus acidophilus: FT-IR spectroscopic analysis. Int J Food Microbiol 2014; 173:41-7. [DOI: 10.1016/j.ijfoodmicro.2013.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022]
|
44
|
Günther TJ, Suhr M, Raff J, Pollmann K. Immobilization of microorganisms for AFM studies in liquids. RSC Adv 2014. [DOI: 10.1039/c4ra03874f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Reproducible immobilization method even for living eukaryotes and prokaryotes on polyelectrolyte coated surfaces for high resolution AFM imaging in liquids.
Collapse
Affiliation(s)
- Tobias J. Günther
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute for Resource Ecology and Helmholtz Institute Freiberg for Resource Technology
- 01328 Dresden, Germany
| | - Matthias Suhr
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01328 Dresden, Germany
| | - Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute for Resource Ecology and Helmholtz Institute Freiberg for Resource Technology
- 01328 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
| | - Katrin Pollmann
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute for Resource Ecology and Helmholtz Institute Freiberg for Resource Technology
- 01328 Dresden, Germany
| |
Collapse
|
45
|
Spence A, Hanson RE, Johnson T, Robinson C, Annells RN. Biochemical characteristics of organic matter in a guano concretion of late miocene or pliocene age from manchester parish in Jamaica. ANALYTICAL CHEMISTRY INSIGHTS 2013; 8:41-52. [PMID: 23843688 PMCID: PMC3700943 DOI: 10.4137/aci.s10380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biogeochemical fate of organic matter (OM) entering soils is an important issue that must be examined to better understand its roles in nitrogen cycling and as a natural modulator of soil-atmospheric carbon fluxes. Despite these critical roles, there are uncertainties in estimating the contribution of this feedback mechanism due in part to a lack of molecular-level information regarding the origin and labile and refractory inventories of OM in soils. In this study, we used a multi-analytical approach to determine molecular-level information for the occurrence and stabilization of OM in a bird guano concretion of the Late Miocene or Pliocene age in Jamaica. We determined the specific organic structures persisting in the concretion and the possible contribution of fossil organic matter to the OM pool in modern environments. Our results indicate that aliphatic species, presumably of a highly polymethylenic nature [(CH2)n], may significantly contribute to the stable soil-C pool. Although not as significant, proteins and carbohydrates were also enriched in the sample, further suggesting that fossil organic matter may contribute to carbon and nitrogen pools in present day soil organic matter.
Collapse
Affiliation(s)
- Adrian Spence
- International Centre for Environmental and Nuclear Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| | | | | | | | | |
Collapse
|
46
|
Dianawati D, Mishra V, Shah NP. Effect of drying methods of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris on secondary protein structure and glass transition temperature as studied by Fourier transform infrared and differential scanning calorimetry. J Dairy Sci 2013; 96:1419-30. [PMID: 23357021 DOI: 10.3168/jds.2012-6058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022]
Abstract
Protective mechanisms of casein-based microcapsules containing mannitol on Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris, changes in their secondary protein structures, and glass transition of the microcapsules were studied after spray- or freeze-drying and after 10 wk of storage in aluminum foil pouches containing different desiccants (NaOH, LiCl, or silica gel) at 25°C. An in situ Fourier transform infrared analysis was carried out to recognize any changes in fatty acids (FA) of bacterial cell envelopes, interaction between polar site of cell envelopes and microcapsules, and alteration of their secondary protein structures. Differential scanning calorimetry was used to determine glass transition of microcapsules based on glass transition temperature (T(g)) values. Hierarchical cluster analysis based on functional groups of cell envelopes and secondary protein structures was also carried out to classify the microencapsulated bacteria due to the effects of spray- or freeze-drying and storage for 10 wk. The results showed that drying process did not affect FA and secondary protein structures of bacteria; however, those structures were affected during storage depending upon the type of desiccant used. Interaction between exterior of bacterial cell envelopes and microencapsulant occurred after spray- or freeze-drying; however, these structures were maintained after storage in foil pouch containing sodium hydroxide. Method of drying and type of desiccants influenced the level of similarities of microencapsulated bacteria. Desiccants and method of drying affected glass transition, yet no T(g) ≤25°C was detected. This study demonstrated that the changes in FA and secondary structures of the microencapsulated bacteria still occurred during storage at T(g) above room temperature, indicating that the glassy state did not completely prevent chemical activities.
Collapse
Affiliation(s)
- Dianawati Dianawati
- Tribhuwana Tunggadewi University, Jalan Telaga Warna, Malang 65145, East Java, Indonesia
| | | | | |
Collapse
|
47
|
Aschenbrenner M, Kulozik U, Foerst P. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model. Cryobiology 2012; 65:308-18. [PMID: 22964396 DOI: 10.1016/j.cryobiol.2012.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/11/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
The aim of this work was to describe the temperature dependence of microbial inactivation for several storage conditions and protective systems (lactose, trehalose and dextran) in relation to the physical state of the sample, i.e. the glassy or non-glassy state. The resulting inactivation rates k were described by applying two models, Arrhenius and Williams-Landel-Ferry (WLF), in order to evaluate the relevance of diffusional limitation as a protective mechanism. The application of the Arrhenius model revealed a significant decrease in activation energy E(a) for storage conditions close to T(g). This finding is an indication that the protective effect of a surrounding glassy matrix can, at least, partly be ascribed to its inherent restricted diffusion and mobility. The application of the WLF model revealed that the temperature dependence of microbial inactivation above T(g) is significantly weaker than predicted by the universal coefficients. Thus, it can be concluded that microbial inactivation is not directly linked with the mechanical relaxation behavior of the surrounding matrix as it was reported for viscosity and crystallization phenomena in case of disaccharide systems.
Collapse
Affiliation(s)
- Mathias Aschenbrenner
- Food Process Engineering and Dairy Technology, Research Center for Nutrition and Food Sciences-ZIEL, Department Technology, TU München, Weihenstephaner Berg 1, 85354 Freising, Germany.
| | | | | |
Collapse
|
48
|
Deepika G, Karunakaran E, Hurley CR, Biggs CA, Charalampopoulos D. Influence of fermentation conditions on the surface properties and adhesion of Lactobacillus rhamnosus GG. Microb Cell Fact 2012; 11:116. [PMID: 22931558 PMCID: PMC3441878 DOI: 10.1186/1475-2859-11-116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 08/07/2012] [Indexed: 12/19/2022] Open
Abstract
Background The surface properties of probiotic bacteria influence to a large extent their interactions within the gut ecosystem. There is limited amount of information on the effect of the production process on the surface properties of probiotic lactobacilli in relation to the mechanisms of their adhesion to the gastrointestinal mucosa. The aim of this work was to investigate the effect of the fermentation pH and temperature on the surface properties and adhesion ability to Caco-2 cells of the probiotic strain Lactobacillus rhamnosus GG. Results The cells were grown at pH 5, 5.5, 6 (temperature 37°C) and at pH 6.5 (temperature 25°C, 30°C and 37°C), and their surfaces analysed by X-ray photoelectron spectrometry (XPS), Fourier transform infrared spectroscopy (FT-IR) and gel-based proteomics. The results indicated that for all the fermentation conditions, with the exception of pH 5, a higher nitrogen to carbon ratio and a lower phosphate content was observed at the surface of the bacteria, which resulted in a lower surface hydrophobicity and reduced adhesion levels to Caco-2 cells as compared to the control fermentation (pH 6.5, 37°C). A number of adhesive proteins, which have been suggested in previous published works to take part in the adhesion of bacteria to the human gastrointestinal tract, were identified by proteomic analysis, with no significant differences between samples however. Conclusions The temperature and the pH of the fermentation influenced the surface composition, hydrophobicity and the levels of adhesion of L. rhamnosus GG to Caco-2 cells. It was deduced from the data that a protein rich surface reduced the adhesion ability of the cells.
Collapse
Affiliation(s)
- Gurjot Deepika
- Food and Nutritional Sciences, University of Reading, PO Box 226, Reading, UK, RG6 6AP
| | | | | | | | | |
Collapse
|
49
|
Role of calcium alginate and mannitol in protecting Bifidobacterium. Appl Environ Microbiol 2012; 78:6914-21. [PMID: 22843535 DOI: 10.1128/aem.01724-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fourier transform infrared (FTIR) spectroscopy was carried out to ascertain the mechanism of Ca-alginate and mannitol protection of cell envelope components and secondary proteins of Bifidobacterium animalis subsp. lactis Bb12 after freeze-drying and after 10 weeks of storage at room temperature (25°C) at low water activities (a(w)) of 0.07, 0.1, and 0.2. Preparation of Ca-alginate and Ca-alginate-mannitol as microencapsulants was carried out by dropping an alginate or alginate-mannitol emulsion containing bacteria using a burette into CaCl(2) solution to obtain Ca-alginate beads and Ca-alginate-mannitol beads, respectively. The wet beads were then freeze-dried. The a(w) of freeze-dried beads was then adjusted to 0.07, 0.1, and 0.2 using saturated salt solutions; controls were prepared by keeping Ca-alginate and Ca-alginate-mannitol in aluminum foil without a(w) adjustment. Mannitol in the Ca-alginate system interacted with cell envelopes during freeze-drying and during storage at low a(w)s. In contrast, Ca-alginate protected cell envelopes after freeze-drying but not during 10-week storage. Unlike Ca-alginate, Ca-alginate-mannitol was effective in retarding the changes in secondary proteins during freeze-drying and during 10 weeks of storage at low a(w)s. It appears that Ca-alginate-mannitol is more effective than Ca-alginate in preserving cell envelopes and proteins after freeze-drying and after 10 weeks of storage at room temperature (25°C).
Collapse
|
50
|
Staniewicz L, Donald AM, Stokes DJ, Thomson N, Sivaniah E, Grant A, Bulmer D, Khan A. The application of STEM and in situ controlled dehydration to bacterial systems using ESEM. SCANNING 2012; 34:237-246. [PMID: 22689513 DOI: 10.1002/sca.21000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/19/2011] [Indexed: 06/01/2023]
Abstract
Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and ΔmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the ΔmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type.
Collapse
Affiliation(s)
- Lech Staniewicz
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|