1
|
Santhanam P, Madina MH, Albuini FM, Labbé C, Fietto LG, Bélanger RR. A unique effector secreted by Pseudozyma flocculosa mediates its biocontrol activity. BMC Biol 2023; 21:118. [PMID: 37226185 PMCID: PMC10210494 DOI: 10.1186/s12915-023-01624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Pseudozyma flocculosa is a highly efficient biocontrol agent (BCA) of powdery mildews whose mode of action remains elusive. It is known to secrete unique effectors during its interaction with powdery mildews but effectors have never been shown to be part of the arsenal of a BCA. Here, we characterize the role of the effector Pf2826 released by Pseudozyma flocculosa during its tripartite interaction with barley and the pathogen fungus Blumeria graminis f. sp. hordei. RESULTS We utilized CRISPR-Cas9-based genome editing and confirmed that secreted P. flocculosa effector Pf2826 is required for full biocontrol activity. We monitored the localization of the effector Pf2826 with C-terminal mCherry tag and found it localized around the haustoria and on powdery mildew spores. His-tagged Pf2826 recombinant protein was expressed, purified, and used as bait in a pull-down assay from total proteins extracted during the tripartite interaction. Potential interactors were identified by LC-MS/MS analysis after removing unspecific interactions found in the negative controls. A two-way yeast two-hybrid assay validated that Pf2826 interacted with barley pathogenesis-related (PR) proteins HvPR1a and chitinase and with an effector protein from powdery mildew. CONCLUSIONS In contrast to the usual modes of action of competition, parasitism, and antibiosis ascribed to BCAs, this study shows that effector pf2826 plays a vital role in the biocontrol activity of P. flocculosa by interacting with plant PR proteins and a powdery mildew effector, altering the host-pathogen interaction.
Collapse
Affiliation(s)
- Parthasarathy Santhanam
- Département de Phytologie, Université Laval, Québec, QC, Canada
- Present Address: Agriculture Agri-Food Canada, Morden, MB, Canada
| | - Mst Hur Madina
- Département de Phytologie, Université Laval, Québec, QC, Canada
| | - Fernanda Matias Albuini
- Département de Phytologie, Université Laval, Québec, QC, Canada
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Caroline Labbé
- Département de Phytologie, Université Laval, Québec, QC, Canada
| | - Luciano Gomes Fietto
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
2
|
Oraby A, Rupp S, Zibek S. Techno-Economic Analysis as a Driver for Optimisation of Cellobiose Lipid Fermentation and Purification. Front Bioeng Biotechnol 2022; 10:913351. [PMID: 35782519 PMCID: PMC9249125 DOI: 10.3389/fbioe.2022.913351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cellobiose lipids (CL) are glycolipids synthesized by Ustilaginaceae species with potential application as detergents or in cosmetics. This study identified process optimisation potential for CL fermentation based on process modelling and techno-economic analysis. Using a stoichiometric equation based on laboratory data, we calculated the maximum possible CL yield YP/S of 0.45 gCL·gglucose−1 at the biomass yield of 0.10 gBiomass·gglucose−1 with an Ustilago maydis strain. Due to substrate inhibition that may occur at high glucose concentrations, a fed-batch process to increase biomass and CL concentrations was considered in our model. Simulation of different process scenarios showed that the choice of aeration units with high oxygen transfer rates and adaptation of power input to oxygen uptake can significantly decrease electricity consumption. We further assessed scenarios with different fermentation media and CL purification methods, suggesting additional process optimisation potential. Here the omission of vitamins from the fermentation medium proved to be a possible mean to enhance process economy, without compromising CL productivity.
Collapse
Affiliation(s)
- Amira Oraby
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
- *Correspondence: Susanne Zibek,
| |
Collapse
|
3
|
Overview on Glycosylated Lipids Produced by Bacteria and Fungi: Rhamno-, Sophoro-, Mannosylerythritol and Cellobiose Lipids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:73-122. [DOI: 10.1007/10_2021_200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Shu Q, Lou H, Wei T, Liu X, Chen Q. Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review. Pharmaceutics 2021; 13:227. [PMID: 33562052 PMCID: PMC7914807 DOI: 10.3390/pharmaceutics13020227] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Glycolipid biosurfactants are natural amphiphiles and have gained particular interest recently in their biodegradability, diversity, and bioactivity. Microbial infection has caused severe morbidity and mortality and threatened public health security worldwide. Glycolipids have played an important role in combating many diseases as therapeutic agents depending on the self-assembly property, the anticancer and anti-inflammatory properties, and the antimicrobial properties, including antibacterial, antifungal, and antiviral effects. Besides, their role has been highlighted as scavengers in impeding the biofilm formation and rupturing mature biofilm, indicating their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction in vast hospital infections. Notably, glycolipids have been widely applied to the synthesis of novel antimicrobial materials due to their excellent amphipathicity, such as nanoparticles and liposomes. Accordingly, this review will provide various antimicrobial applications of glycolipids as functional ingredients in medical therapy.
Collapse
Affiliation(s)
| | | | | | | | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.L.); (T.W.); (X.L.)
| |
Collapse
|
5
|
Secretion-Based Modes of Action of Biocontrol Agents with a Focus on Pseudozyma aphidis. PLANTS 2021; 10:plants10020210. [PMID: 33499173 PMCID: PMC7912694 DOI: 10.3390/plants10020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 01/18/2023]
Abstract
Plant pathogens challenge our efforts to maximize crop production due to their ability to rapidly develop resistance to pesticides. Fungal biocontrol agents have become an important alternative to chemical fungicides, due to environmental concerns related to the latter. Here we review the complex modes of action of biocontrol agents in general and epiphytic yeasts belonging to the genus Pseudozyma specifically and P. aphidis in particular. Biocontrol agents act through multiple direct and indirect mechanisms, which are mainly based on their secretions. We discuss the direct modes of action, such as antibiosis, reactive oxygen species-producing, and cell wall-degrading enzyme secretions which can also play a role in mycoparasitism. In addition, we discuss indirect modes of action, such as hyperbiotrophy, induced resistance and growth promotion based on the secretion of effectors and elicitors from the biocontrol agent. Due to their unique characteristics, epiphytic yeasts hold great potential for use as biocontrol agents, which may be more environmentally friendly than conventional pesticides and provide a way to reduce our dependency on fungicides based on increasingly expensive fossil fuels. No less important, the complex mode of action of Pseudozyma-based biocontrol agents can also reduce the frequency of resistance developed by pathogens to these agents.
Collapse
|
6
|
Sipiczki M, Selim SA. Antagonistic yeasts from a salt-lake region in Egypt: identification of a taxonomically distinct group of phylloplane strains related to Sporisorium. Antonie Van Leeuwenhoek 2018; 112:523-541. [PMID: 30317452 DOI: 10.1007/s10482-018-1184-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/06/2018] [Indexed: 11/28/2022]
Abstract
Non-pathogenic yeasts antagonising microorganisms that cause pre- and postharvest diseases of plants have been found in diverse habitats. Their practical applicability as biocontrol agents (BCAs) depends on the strength of their antagonistic activity and/or spectrum of sensitive target microorganisms. In this study, yeasts were isolated from the phylloplane and fruits of plants growing in the alkaline water lake region Wadi El-Natrun, Egypt, and tested for antifungal and antibacterial activity. All phylloplane yeast isolates belonged to the Basidiomycota and most of them could antagonise at least certain test organisms. One group of isolates showing strong antagonism against almost all fungi and yeasts appears to represent a hitherto undescribed species distantly related to the smut genus Sporisorium. This is the first report of antagonistic activity in Sporisorium. The isolates assigned to Naganishia and Papiliotrema were more effective against bacteria. The broadest range and intensity of antagonism was observed in the fruit-associated strains belonging to the ascomycetous species Wickerhamomyces subpelliculosus. The Wickerhamomyces strains are good broad-spectrum BCA candidates, the Sporisorium strains could be used as efficient antifungal BCAs, whereas the Papiliotrema isolate can be exploited as an antibacterial biocontrol agent.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, 4032, Hungary.
| | - Samy A Selim
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Al-Jouf, Kingdom of Saudi Arabia.,Faculty of Science, Botany Department, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Abdel-Mawgoud AM, Stephanopoulos G. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering. Synth Syst Biotechnol 2018; 3:3-19. [PMID: 29911195 PMCID: PMC5884252 DOI: 10.1016/j.synbio.2017.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Accepted: 12/04/2017] [Indexed: 01/15/2023] Open
Abstract
Glycosylated lipids (GLs) are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME) of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.
Collapse
Affiliation(s)
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Laur J, Ramakrishnan GB, Labbé C, Lefebvre F, Spanu PD, Bélanger RR. Effectors involved in fungal-fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent-powdery mildew-plant. THE NEW PHYTOLOGIST 2018; 217:713-725. [PMID: 29044534 PMCID: PMC6079639 DOI: 10.1111/nph.14851] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/13/2017] [Indexed: 05/08/2023]
Abstract
Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. We have conducted the first comprehensive transcriptomic analysis of all three organisms in an effort to understand the elusive properties of Pseudozyma flocculosa in the context of its biocontrol activity against Blumeria graminis f.sp. hordei as it parasitizes Hordeum vulgare. After inoculation of P. flocculosa, the tripartite interaction was monitored over time and samples collected for scanning electron microscopy and RNA sequencing. Based on our observations, P. flocculosa indirectly parasitizes barley, albeit transiently, by diverting nutrients extracted by B. graminis from barley leaves through a process involving unique effectors. This brings novel evidence that such molecules can also influence fungal-fungal interactions. Their release is synchronized with a higher expression of powdery mildew haustorial effectors, a sharp decline in the photosynthetic machinery of barley and a developmental peak in P. flocculosa. The interaction culminates with a collapse of B. graminis haustoria, thereby stopping P. flocculosa growth, as barley plants show higher metabolic activity. To conclude, our study has uncovered a complex and intricate phenomenon, described here as hyperbiotrophy, only achievable through the conjugated action of the three protagonists.
Collapse
Affiliation(s)
- Joan Laur
- Département de PhytologieUniversité LavalQuébecQCCanadaG1V 0A6
| | | | - Caroline Labbé
- Département de PhytologieUniversité LavalQuébecQCCanadaG1V 0A6
| | | | - Pietro D. Spanu
- Department of Life SciencesImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | | |
Collapse
|
9
|
Kulakovskaya EV, Mironov AA. Resistance to cellobiose lipids and specific features of lipid composition in yeast. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 2015; 31:1001-20. [DOI: 10.1007/s11274-015-1866-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022]
|
11
|
Kulakovskaya E, Baskunov B, Zvonarev A. The antibiotic and membrane-damaging activities of cellobiose lipids and sophorose lipids. J Oleo Sci 2015; 63:701-7. [PMID: 24976613 DOI: 10.5650/jos.ess14037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibiotic activity was compared for Cryptococcus humicola cellobiose lipids, the mixture of 2,3,4-О-triacetyl-β-D-glucopyranosyl-(1→4)-(6-О-acetyl-β-D-glucopyranosyl-(1→16)-2,16-dihydroxyhexodecanoic acid and 2,3,4-О-triacetyl-β-D-glucopyranosyl-(1→4)-(6-О-acetyl-β-D-glucopyranosyl-(1→16)-2,17,18-trihydroxyoctotodecanoic acid, and the commercial sophorose lipid mixture of a mono-acetylated acidic sophorose lipid and a di-acetylated acidic sophorose lipid, both containing the C18:1 fatty acid residue. The MIC values of cellobiose lipids were 0.005 and 0.04 mg/mL for Filobasidiella neoformans and Candida tropicalis, respectively. The MIC values of sophorose lipids were 1 and 15 mg/mL for F. neoformans and C. tropicalis, respectively. MIC values for some bacteria were in the range of 10-30 mg/mL for both glycolipid preparations. Both sophorose lipids and cellobiose lipids displayed a membrane-damaging activity against F. neoformans. The treatment with these glycolipids reduces the content of ATP in the cells of test cultures and results in their staining with ethidium bromide.
Collapse
Affiliation(s)
- Ekaterina Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
| | | | | |
Collapse
|
12
|
Roelants SL, Saerens KM, Derycke T, Li B, Lin Y, Van de Peer Y, De Maeseneire SL, Van Bogaert IN, Soetaert W. Candida bombicola
as a platform organism for the production of tailor‐made biomolecules. Biotechnol Bioeng 2013; 110:2494-503. [DOI: 10.1002/bit.24895] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Sophie L.K.W. Roelants
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Karen M.J. Saerens
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Thibaut Derycke
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Bing Li
- Department of Plant Biotechnology and BioinformaticsGhent UniversityTechnologiepark 927, 9052Zwijnaarde
| | - Yao‐Cheng Lin
- Department of Plant Systems BiologyVIBTechnologiepark 927, 9052Zwijnaarde
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityTechnologiepark 927, 9052Zwijnaarde
- Department of Plant Systems BiologyVIBTechnologiepark 927, 9052Zwijnaarde
| | - Sofie L. De Maeseneire
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Inge N.A. Van Bogaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Wim Soetaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| |
Collapse
|
13
|
Peng C, Dai M, Wan F, Peng F. Antibacterial Activity and Mechanism of Pogostemon cablin Against Bacteria from Milk of Dairy Cows Suffering with Mastitis. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/javaa.2012.3289.3297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Beta hydroxylation of glycolipids from Ustilago maydis and Pseudozyma flocculosa by an NADPH-dependent β-hydroxylase. Appl Environ Microbiol 2011; 77:7823-9. [PMID: 21926207 DOI: 10.1128/aem.05822-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the β position but differ in the long fatty acid, which is hydroxylated at the α position in UA and at the β position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the β-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis Δuhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for β hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis Δahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis Δahd1 phenotype nor resulted in the production of β-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation.
Collapse
|
15
|
Teichmann B, Labbé C, Lefebvre F, Bölker M, Linne U, Bélanger RR. Identification of a biosynthesis gene cluster for flocculosin a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa. Mol Microbiol 2011; 79:1483-95. [DOI: 10.1111/j.1365-2958.2010.07533.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Saerens KMJ, Zhang J, Saey L, Van Bogaert INA, Soetaert W. Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain. Yeast 2011; 28:279-92. [PMID: 21456054 DOI: 10.1002/yea.1838] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/26/2010] [Indexed: 01/18/2023] Open
Abstract
Sophorolipids produced by the non-pathogenic yeast Candida bombicola ATCC 22214 are glycolipid biosurfactants applied commercially as biodegradable and eco-friendly detergents. Their low cell toxicity, excellent wetting capability and antimicrobial activity attract the attention of high-value markets, such as the cosmetic and pharmaceutical industries. Although sophorolipid production yields have been increased by the optimization of fermentation parameters and feed sources, the biosynthetic pathway and genetic mechanism behind sophorolipid production still remains unclear. Here we identify a UDP-glucosyltransferase gene, UGTB1, with a key function in this economically important pathway. The protein shows sequence and structural homology to several bacterial glycosyltransferases involved in macrolide antibiotic synthesis. Deletion of UGTB1 in C. bombicola did not affect cell growth and resulted in a yeast producing glucolipids, thereby opening the route for in vivo production of these glycolipid intermediates. Activity assays on cell lysates confirmed that the identified gene is responsible for the second glucosylation step during sophorolipid production and illustrated that sophorolipid production in C. bombicola involves the stepwise action of two independent glucosyltransferases. The complete UGTB1 sequence data have been submitted to the GenBank database (http://www.ncbi.nlm.nih.gov) under Accession No. HM440974.
Collapse
Affiliation(s)
- Karen M J Saerens
- Laboratory of Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 2010; 87:427-44. [PMID: 20424836 DOI: 10.1007/s00253-010-2589-0] [Citation(s) in RCA: 687] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.
Collapse
Affiliation(s)
- Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|