1
|
Álvarez-Herrera C, Maisanaba S, Llana Ruíz-Cabello M, Rojas R, Repetto G. A strategy for the investigation of toxic mechanisms and protection by efflux pumps using Schizosaccharomyces pombe strains: Application to rotenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171253. [PMID: 38408667 DOI: 10.1016/j.scitotenv.2024.171253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Effects not related with the inhibition of complex I of the mitochondrial electron transport chain are studied in S. pombe, which lacks it. This study aims: First, the use of a strategy with S. pombe strains to investigate the toxicity, mechanisms of action, interactions and detoxication by efflux pumps. Second, to investigate the mechanisms of toxic action of rotenone. In the dose-response assessment, the yeast presented a good correlation with the toxicity in Daphnia magna for 15 chemicals. In the mechanistic study, the mph1Δ strain presented marked specificity to the interaction with microtubules by carbendazim. DNA damage caused by hydroxyurea, an inhibitor of deoxynucleotide synthesis, was identified with marked specificity with the rad3Δ strain. The sty1Δ strain was very sensitive to the oxidative and osmotic stress induced by hydrogen peroxide and potassium chloride, respectively, being more sensitive to oxidative stress than the pap1Δ strain. The protection by exclusion pumps was also evaluated. Rotenone presented low toxicity in S. pombe due to the lack of its main target, and the marked protection by the exclusion transporters Bfr1, Pmd1, Caf5 and Mfs1. Marked cellular stress was detected. Finally, the toxicity of rotenone could be potentiated by the fungicide carbendazim and the antimetabolite hydroxyurea. In conclusion, the use of S. pombe strains is a valid strategy to: a) assess global toxicity; b) investigate the main mechanisms of toxic action, particularly spindle and DNA interferences, and osmotic and oxidative stress not related to complex I inhibition; c) explore the detoxication by efflux pumps; and d) evaluate possible chemical interactions. Therefore, it should be useful for the investigation of adverse outcome pathways.
Collapse
Affiliation(s)
| | - Sara Maisanaba
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | | | - Raquel Rojas
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
2
|
Zhang Y, Zhang X, Qiu W. An efficient mutagenesis system to improve the propamocarb tolerance in Lecanicillium lecanii (Zimmermann) Zare & Gams. Front Microbiol 2023; 14:1243017. [PMID: 37744898 PMCID: PMC10511759 DOI: 10.3389/fmicb.2023.1243017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Lecanicillium lecanii (Zimmermann) Zare & Gams is used as an effective biopesticide for the control of sap-sucking insect pests on agricultural crops. However, low fungicide tolerance limits its large-scale field application. To improve the propamocarb tolerance in L. lecanii, a composite mutagenesis system was established by using UV-light (U), N-Methyl-N'-nitro-N-nitrosoguanidine (NTG) (N) and N+ ion-beam (I). The permutation type of three agents was a consecutive mutagenesis treatment (I/N/U) after an intermittent treatment (U + N + I). The "U" mutagenesis was performed at 254 nm for 60 s and at a distance of 45 cm under a 20 W germicidal lamp, the "N" mutagenesis was performed at a concentration of 1.0 mg/mL NTG for 60 min, and the "I" mutagenesis was performed by low energy N+ ion-beam using a dose of 10 × 1013 ions/cm2 at 30 keV. This composite mutagenesis system was recorded as the "U + N + I + I/N/U," and then the mutagenesis efficiency in improving propamocarb tolerance was assessed by analyzing changes of mutants in the propamocarb sensitivity, mitotic stability, mycelial growth speed on plates or in liquid, sporulation on plates or aphids, conidial germination, 50% lethal concentration (LC50) and 50% lethal time (LT50) to aphids, lipid constituent and cell membrane permeability and control against aphids in the presence or absence of propamocarb. Compared to the wild-type isolate with a 50% effective concentration (EC50) value of 503.6 μg/mL propamocarb, the Ll-IC-UNI produced by the "U + N + I + I/N/U" had the highest EC50 value of 3576.4 μg/mL and a tolerance ratio of 7.1. The mutant was mitotically stable in 20-passage cultivation and did not show any unfavorable changes in growth and virulence indicators. The mutant showed the highest ability to resist or avoid the damaging effects of propamocarb as reflected by the alternations of lipid constituents and membrane permeability. The interval time for applying fungal agent was significantly shortened in this mutant after spraying a field recommended dose of 550 μg/mL propamocarb. In conclude, the "U + N + I + I/N/U" composite mutagenesis mode was efficient and useful to improve the propamocarb-tolerance of L. lecanii and the obtained Ll-IC-UNI could have commercial potential for field application.
Collapse
Affiliation(s)
- Yanjun Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xiao Zhang
- National Pesticide Engineering Research Center, Nankai University, Tianjin, China
| | - Weiliang Qiu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Experimental Evolution of Multidrug Resistance in Neurospora crassa under Antifungal Azole Stress. J Fungi (Basel) 2022; 8:jof8020198. [PMID: 35205952 PMCID: PMC8875772 DOI: 10.3390/jof8020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug resistance, defined as the resistance to multiple drugs in different categories, has been an increasing serious problem. Limited antifungal drugs and the rapid emergence of antifungal resistance prompt a thorough understanding of how the occurrence of multidrug resistance develops and which mechanisms are involved. In this study, experimental evolution was performed under single-azole-drug stress with the model filamentous fungus Neurospora crassa. By about 30 weeks of continuous growth on agar plates containing ketoconazole or voriconazole with weekly transfer, four evolved multidrug-resistant strains 30thK1, 30thK2, 26thV1, and 24thV2 were obtained. Compared to the ancestral strain, all four strains increased resistance not only to commonly used azoles, including ketoconazole, voriconazole, itraconazole, fluconazole, and triadimefon, but also to antifungal drugs in other categories, including terbinafine (allylamine), amorolfine (morpholine), amphotericin B (polyene), polyoxin B (chitin synthesis inhibitor), and carbendazim (β-tubulin inhibitor). After 8 weeks of growth on agar plates without antifungal drugs with weekly transfer, these evolved strains still displayed multidrug-resistant phenotype, suggesting the multidrug resistance could be stably inherited. Transcriptional measurement of drug target genes and drug transporter genes and deletion analysis of the efflux pump gene cdr4 in the evolved strains suggest that overexpression of cdr4 played a major role in the resistance mechanisms for azoles and terbinafine in the evolved strains, particularly for 30thK2 and 26thV1, and evolved drug-resistant strains had less intracellular ketoconazole accumulation and less disruption of ergosterol accumulations under ketoconazole stress compared to wild type. Mutations specifically present in evolved drug-resistant strains were identified by genome re-sequencing, and drug susceptibility test of knockout mutants for most of mutated genes suggests that mutations in 16 genes, functionally novel in drug resistance, potentially contribute to multidrug resistance in evolved strains.
Collapse
|
4
|
Resistance mechanisms and fitness of pyraclostrobin-resistant isolates of Lasiodiplodia theobromae from mango orchards. PLoS One 2021; 16:e0253659. [PMID: 34161390 PMCID: PMC8221464 DOI: 10.1371/journal.pone.0253659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Background Stem-end rot, caused by Lasiodiplodia theobromae (Pat.) Griffon & Maubl is a serious postharvest disease in mango. In China, a high prevalence of the QoI fungicides resistance has been reported in the last decade. The study aimed to discuss factors determining rapid development of pyraclostrobin-resistance and its resistance mechanisms. Methods To determine the resistance stability and fitness of pyraclostrobin resistance in L. theobromae, three phenotypes of pyraclostrobin resistance were compared and analyzed for the EC50 values, mycelial growth, virulence and temperature sensitivity and osmotic stress sensitivity. The relative conductivity and enzyme activities of different phenotypes were compared under fungicide stress to explore possible biochemical mechanisms of pyraclostrobin resistance in L. theobromae. The Cytb gene sequences of different phenotypes were analysed. Results All isolates retained their original resistance phenotypes during the 10 subcultures on a fungicide-free PDA, factor of sensitivity change (FSC) was approximately equal to 1. The resistance-pyraclostrobin of the field isolates should be relatively stable. Two pyraclostrobin-resistant phenotypes shared similar mycelial growth, virulence and temperature sensitivity with pyraclostrobin-sensitive phenotype. After treated by pyraclostrobin, the relative conductivity of the sensitive phenotype was significantly increased. The time of Pyr-R and Pyr-HR reached the most conductivity was about 8–10 times than that of Pyr-S, the time for the maximum value appearance showed significant differences between sensitive and resistant phenotypes. The activities of Glutathione S-transferase (GST), catalase (CAT) and peroxidase (POD) of Pyr-HR were 1.78, 5.45 and 1.65 times respectively, significantly higher than that of Pyr-S after treated by 200 mg/l pyraclostrobin. Conclusion The results showed that the pyraclostrobin-resistant phenotypes displayed high fitness and high-risk. The nucleotide sequences were identical among all pyraclostrobin-resistant and -sensitive isolates. The pyraclostrobin resistance was not attributable to Cytb gene alterations, there may be some of other resistance mechanisms. Differential response of enzyme activity and cell membrane permeability were observed in resistant- and sensitive-isolates suggesting a mechanism of metabolic resistance.
Collapse
|
5
|
Qiu L, Nie SX, Hu SJ, Wang SJ, Wang JJ, Guo K. Screening of Beauveria bassiana with high biocontrol potential based on ARTP mutagenesis and high-throughput FACS. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104732. [PMID: 33357554 DOI: 10.1016/j.pestbp.2020.104732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Beauveria bassiana is a promising biocontrol agent due to its entomopathogenic activities and residue-free characteristics. However, its susceptibility to abiotic stresses and naturally low virulence limit the effective application of this fungus. To effectively obtain fungal strains with high biocontrol potential, fluorescence-activated cell sorting (FACS) was used to screen mutant libraries generated by atmospheric and room temperature plasma (ARTP). Among about 8000 mutants obtained by ARTP mutagenesis, six candidate mutants were selected according to the forward scatter (FSC) signal readings of FACS. B6, with a 37.4% higher FSC reading than wild-type (WT), showed a 32.6% increase in virulence. It also presented a 13.5% decrease in median germinating time (GT50) and a 12.1% increase in blastospore production. Comparative analysis between insect transcriptional responses to B6 and WT infection showed that the immune response coupled with protein digestion and absorption progress was highly activated in B6-infected Galleria mellonella larvae, while fatty acid synthesis was suppressed after 3 days of infection. Our results confirmed the feasibility of sorting B. bassiana with high biocontrol potential via the combination of ARTP and FACS and facilitated the understanding of insect-pathogen interactions, highlighting a new strategy for modifying entomopathogenic fungi to improve the efficiency of biological control.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Sheng-Xin Nie
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shou-Juan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Kai Guo
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
6
|
Yang Y, Di Zeng G, Zhang Y, Xue R, Hu YJ. Molecular and Biochemical Characterization of Carbendazim-Resistant Botryodiplodia theobromae Field Isolates. PLANT DISEASE 2019; 103:2076-2082. [PMID: 31194616 DOI: 10.1094/pdis-01-19-0148-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stem-end rot caused by Botryodiplodia theobromae is a destructive disease of mango. B. theobromae field isolates resistant to carbendazim (MBC) were collected in Hainan Province, China. In this study, the characteristics of these field isolates with resistance to MBC were investigated. The resistance of B. theobromae isolates to MBC was stably inherited. Both the MBC-resistant and MBC-sensitive isolates had similar mycelial growth rates, pathogenicity, sensitivity to high glucose, glycerol content, and peroxidase activity. Compared with MBC-sensitive isolates, MBC-resistant isolates were more sensitive to low temperature and had a significant decrease in sensitivity to high NaCl and a significant increase in catalase (CAT) and glutathione S-transferase (GST) activities. After MBC treatment, the cell membrane permeability of the sensitive isolates was markedly increased compared with that of the resistant isolates. Analysis of the β-tubulin gene sequence revealed point mutations resulting in substitutions at codon 198 from glutamic acid (GAG) to alanine (GCG) in moderately resistant isolates, and at codon 200 from phenylalanine (TTC) to tyrosine (TAC) in highly resistant isolates. These β-tubulin gene mutations were consistently associated with MBC resistance. Overall, we infer that the altered cell membrane permeability and the increase in CAT and GST activities of the resistant isolates are linked to MBC resistance.
Collapse
Affiliation(s)
- Ye Yang
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Geng Di Zeng
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Yu Zhang
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Ru Xue
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Ya Juan Hu
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
7
|
Baral B. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters. ADVANCES IN GENETICS 2017; 98:117-154. [PMID: 28942792 DOI: 10.1016/bs.adgen.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases.
Collapse
|
8
|
Liu L, Zhang J, Chen C, Teng J, Wang C, Luo D. Structure and biosynthesis of fumosorinone, a new protein tyrosine phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea. Fungal Genet Biol 2015; 81:191-200. [DOI: 10.1016/j.fgb.2015.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 11/24/2022]
|
9
|
Dubey MK, Jensen DF, Karlsson M. An ATP-binding cassette pleiotropic drug transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:725-732. [PMID: 24654977 DOI: 10.1094/mpmi-12-13-0365-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate active efflux of natural and synthetic toxicants and are considered to be important for drug tolerance in microorganisms. In biological control agents (BCA), ABC transporters can play important roles in antagonism by providing protection against toxins derived from the fungal prey and by mediating the secretion of endogenous toxins. In the present study, we generated deletion and complementation strains of the ABC transporter abcG5 in the fungal BCA Clonostachys rosea to study its role in xenobiotic tolerance and antagonism. Gene expression analysis shows induced expression of abcG5 in the presence of the Fusarium mycotoxin zearalenone (ZEA), secreted metabolites of F. graminearum, and different classes of fungicides. Phenotypic analysis of abcG5 deletion and complementation strains showed that the deletion strains were more sensitive towards F. graminearum culture filtrates, ZEA, and iprodione- and mefenoxam-based fungicides, thus suggesting the involvement of abcG5 in cell protection. The ΔabcG5 strains displayed reduced antagonism towards F. graminearum in a plate confrontation assay. Furthermore, the ΔabcG5 strains failed to protect barley seedlings from F. graminearium foot rot disease. These data show that the abcG5 ABC transporter is important for xenobiotic tolerance and biocontrol traits in C. rosea.
Collapse
|
10
|
Klein DM, Wright SH, Cherrington NJ. Xenobiotic transporter expression along the male genital tract. Reprod Toxicol 2014; 47:1-8. [PMID: 24814985 DOI: 10.1016/j.reprotox.2014.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/11/2014] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
The male genital tract plays an important role in protecting sperm by forming a distinct compartment separate from the body which limits exposure to potentially toxic substrates. Transporters along this tract can influence the distribution of xenobiotics into the male genital tract through efflux back into the blood or facilitating the accumulation of toxicants. The aim of this study was to quantitatively determine the constitutive mRNA expression of 30 xenobiotic transporters in caput and cauda regions of the epididymis, vas deferens, prostate, and seminal vesicles from adult Sprague-Dawley rats. The epididymis was found to express at least moderate levels of 18 transporters, vas deferens 15, seminal vesicles 23, and prostate 18. Constitutive expression of these xenobiotic transporters in the male genital tract may provide insight into the xenobiotics that can potentially be transported into these tissues and may provide the molecular mechanism for site specific toxicity of select agents.
Collapse
Affiliation(s)
- David M Klein
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721, United States
| | - Stephen H Wright
- University of Arizona, Department of Physiology, Tucson, AZ 85721, United States
| | - Nathan J Cherrington
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721, United States.
| |
Collapse
|
11
|
Wang ZL, Li F, Li C, Feng MG. Bbssk1, a response regulator required for conidiation, multi-stress tolerance, and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2014; 98:5607-18. [PMID: 24633371 DOI: 10.1007/s00253-014-5644-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 01/18/2023]
Abstract
Ssk1-type response regulator proteins are the core elements of histidine-to-aspartate systems that mediate fungal stress tolerance, a determinant to the biocontrol potential of fungal entomopathogens. We characterized the functions of Beauveria bassiana Ssk1 (Bbssk1) by analyzing multi-phenotypic changes in ΔBbssk1 and differentially expressed genes in the digital gene expression (DGE) libraries of ΔBbssk1 and wild-type constructed under osmotic stress. The Bbssk1 disruption caused 25 % reductions in conidial yield and virulence to Spodoptera litura larvae and significant defects in tolerances to two osmotic salts (81-84 %), H2O2 oxidation (23 %), two fungicides (21-58 %), three cell wall biosynthesis inhibitors (25-36 %), and three metal ions (~8 %) during colony growth, respectively, but little changes in cell sensitivity to menadione oxidation and in conidial thermotolerance and UV-B resistance. RNA-seq analysis with the DGE libraries revealed differential expressions of 1,003 genes in the ΔBbssk1 genome. Of those, many associated with conidiation, stress response, xenobiotic transport, cell wall integrity, and protein/carbohydrate metabolism were remarkably down-regulated, including the genes involved in mitogen-activated protein kinase (MAPK) signal pathway that downstream of Bbssk1. Our results indicate that Bbssk1 regulates positively the expressions of the MAPK cascade in the pathway of B. bassiana and many more downstream genes associated with conidiation, multi-stress tolerance, and virulence.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China,
| | | | | | | |
Collapse
|
12
|
Shinohara S, Fitriana Y, Satoh K, Narumi I, Saito T. Enhanced fungicide resistance in Isaria fumosoroseafollowing ionizing radiation-induced mutagenesis. FEMS Microbiol Lett 2013; 349:54-60. [DOI: 10.1111/1574-6968.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/17/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Yuyun Fitriana
- Faculty of Agriculture; Shizuoka University; Shizuoka Japan
| | - Katsuya Satoh
- Quantum Beam Science Directorate; Japan Atomic Energy Agency; Gunma Japan
| | - Issay Narumi
- Quantum Beam Science Directorate; Japan Atomic Energy Agency; Gunma Japan
| | - Tsutomu Saito
- Faculty of Agriculture; Shizuoka University; Shizuoka Japan
| |
Collapse
|
13
|
Song TT, Zhao J, Ying SH, Feng MG. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus. PLoS One 2013; 8:e62179. [PMID: 23596534 PMCID: PMC3626590 DOI: 10.1371/journal.pone.0062179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/18/2013] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) confers agrochemical compatibility to fungal cells-based mycoinsecticdes but mechanisms involved in MDR remain poorly understood for entomopathogenic fungi, which have been widely applied as biocontrol agents against arthropod pests. Here we characterized the functions of five ATP-binding cassette (ABC) transporters, which were classified to the subfamilies ABC-B (Mdr1), ABC-C (Mrp1) and ABC-G (Pdr1, Pdr2 and Pdr5) and selected from 54 full-size ABC proteins of Beauveria bassiana based on their main domain architecture, membrane topology and transcriptional responses to three antifungal inducers. Disruption of each transporter gene resulted in significant reduction in resistance to four to six of eight fungicides or antifungal drugs tested due to their differences in structure and function. Compared with wild-type and complemented (control) strains, disruption mutants of all the five transporter genes became significantly less tolerant to the oxidants menadione and H2O2 based on 22−41% and 10−31% reductions of their effective concentrations required for the suppression of 50% colony growth at 25°C. Under a standardized spray, the killing actions of ΔPdr5 and ΔMrp1 mutants against Spodoptera litura second-instar larvae were delayed by 59% and 33% respectively. However, no significant virulence change was observed in three other delta mutants. Taken together, the examined five ABC transporters contribute differentially to not only the fungal MDR but antioxidant capability, a phenotype rarely associated with ABC efflux pumps in previous reports; at least some of them are required for the full virulence of B. bassiana, thereby affecting the fungal biocontrol potential. Our results indicate that ABC pump-dependent MDR mechanisms exist in entomopathogenic fungi as do in yeasts and human and plant pathogenic fungi.
Collapse
Affiliation(s)
- Ting-Ting Song
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Horticulture Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Zhao
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
14
|
Wang ZL, Ying SH, Feng MG. Recognition of a core fragment ofBeauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential. Microb Biotechnol 2013; 6:27-35. [PMID: 22639846 PMCID: PMC3815382 DOI: 10.1111/j.1751-7915.2012.00351.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/13/2012] [Accepted: 04/20/2012] [Indexed: 11/29/2022] Open
Abstract
To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (P hyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (P hyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length P hyd1. Further truncating P hyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in P hyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under P hyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, P hyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of P gpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, P hyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang UniversityHangzhou, Zhejiang, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang UniversityHangzhou, Zhejiang, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang UniversityHangzhou, Zhejiang, 310058, China
| |
Collapse
|
15
|
Wang ZL, Zhang LB, Ying SH, Feng MG. Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ Microbiol 2012; 15:409-18. [PMID: 22891860 DOI: 10.1111/j.1462-2920.2012.02848.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The catalase family of Beauveria bassiana (fungal entomopathogen) consists of catA (spore-specific), catB (secreted), catP (peroxisomal), catC (cytoplasmic) and catD (secreted peroxidase/catalase), which were distinguished in phylogeny and structure and functionally characterized by constructing single-gene disrupted and rescued mutants for enzymatic and multi-phenotypic analyses. Total catalase activity decreased 89% and 56% in ΔcatB and ΔcatP, corresponding to the losses of upper and lower active bands gel-profiled for all catalases respectively, but only 9-12% in other knockout mutants. Compared with wild type and complement mutants sharing similar enzymatic and phenotypic parameters, all knockout mutants showed significant (9-56%) decreases in the antioxidant capability of their conidia (active ingredients of mycoinsecticides), followed by remarkable phenotypic defects associated with the fungal biocontrol potential. These defects included mainly the losses of 40% thermotolerance (45°C) in ΔcatA, 46-48% UV-B resistance in ΔcatA and ΔcatD, and 33-47% virulence to Spodoptera litura larvae in ΔcatA, ΔcatP and ΔcatD respectively. Moreover, the drastic transcript upregulation of some other catalase genes observed in the normal culture of each knockout mutant revealed functionally complimentary effects among some of the catalase genes, particularly between catB and catC whose knockout mutants displayed little or minor phenotypic changes. However, the five catalase genes functioned redundantly in mediating the fungal tolerance to either hyperosmotic or fungicidal stress. The differentiated roles of five catalases in regulating the B. bassiana virulence and tolerances to oxidative stress, high temperature and UV-B irradiation provide new insights into fungal adaptation to stressful environment and host invasion.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | | | | | | |
Collapse
|