1
|
Flinn AM, Gennery AR. Primary immune regulatory disorders: Undiagnosed needles in the haystack? Orphanet J Rare Dis 2022; 17:99. [PMID: 35241125 PMCID: PMC8895571 DOI: 10.1186/s13023-022-02249-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
Primary Immune Regulatory Disorders (PIRD) describe a group of conditions characterized by loss of normal inflammatory control and immune tolerance mechanisms, with autoimmunity as a predominant clinical feature. PIRD can arise due to defects in the number or function of regulatory T-lymphocytes, defects in the immune mechanisms required to ‘turn off’ inflammation such as in perforin-dependent cytotoxicity or alterations in cytokine signalling pathways. Diagnosis of PIRD is a significant challenge to physicians due to their rarity, complexity, and diversity in clinical manifestations. Many of these individual conditions lack a genotype–phenotype correlation and display incomplete penetrance. However, establishing a diagnosis is integral in optimizing patient management, including the use of individualized treatment approaches. Increasing awareness among physicians is necessary as patients are likely to present to different subspecialties. Due to the rarity of these conditions, worldwide collaboration and data-sharing is essential to improve our knowledge of the clinical spectrum and disease course in PIRD, and to optimize therapeutic strategies including identification of which patients can benefit from hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Aisling M Flinn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Abstract
Recombination-activating genes (
RAG)
1 and
RAG2 initiate the molecular processes that lead to lymphocyte receptor formation through VDJ recombination. Nonsense mutations in
RAG1/
RAG2 cause the most profound immunodeficiency syndrome, severe combined immunodeficiency (SCID). Other severe and less-severe clinical phenotypes due to mutations in
RAG genes are now recognized. The degree of residual protein function may permit some lymphocyte receptor formation, which confers a less-severe clinical phenotype. Many of the non-SCID phenotypes are associated with autoimmunity. New findings into the effect of mutations in
RAG1/2 on the developing T- and B-lymphocyte receptor give insight into the development of autoimmunity. This article summarizes recent findings and places the genetic and molecular findings in a clinical context.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Migration and diversification of the vagal neural crest. Dev Biol 2018; 444 Suppl 1:S98-S109. [PMID: 29981692 DOI: 10.1016/j.ydbio.2018.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Abstract
Arising within the neural tube between the cranial and trunk regions of the body axis, the vagal neural crest shares interesting similarities in its migratory routes and derivatives with other neural crest populations. However, the vagal neural crest is also unique in its ability to contribute to diverse organs including the heart and enteric nervous system. This review highlights the migratory routes of the vagal neural crest and compares them across multiple vertebrates. We also summarize recent advances in understanding vagal neural crest ontogeny and discuss the contribution of this important neural crest population to the cardiovascular system and endoderm-derived organs, including the thymus, lungs and pancreas.
Collapse
|
4
|
Gennery AR. Advances in genetic and molecular understanding of Omenn syndrome - implications for the future. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1478287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Andrew R Gennery
- Clinical Resource Building, Floor 4, Block 2, Great North Children’s Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Bennstein SB. Unraveling Natural Killer T-Cells Development. Front Immunol 2018; 8:1950. [PMID: 29375573 PMCID: PMC5767218 DOI: 10.3389/fimmu.2017.01950] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer T-cells are a subset of innate-like T-cells with the ability to bridge innate and adaptive immunity. There is great interest in harnessing these cells to improve tumor therapy; however, greater understanding of invariant NKT (iNKT) cell biology is needed. The first step is to learn more about NKT development within the thymus. Recent studies suggest lineage separation of murine iNKT cells into iNKT1, iNKT2, and iNKT17 cells instead of shared developmental stages. This review will focus on these new studies and will discuss the evidence for lineage separation in contrast to shared developmental stages. The author will also highlight the classifications of murine iNKT cells according to identified transcription factors and cytokine production, and will discuss transcriptional and posttranscriptional regulations, and the role of mammalian target of rapamycin. Finally, the importance of these findings for human cancer therapy will be briefly discussed.
Collapse
Affiliation(s)
- Sabrina Bianca Bennstein
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Flinn AM, Gennery AR. Treatment of Pediatric Acute Graft-versus-Host Disease-Lessons from Primary Immunodeficiency? Front Immunol 2017; 8:328. [PMID: 28377772 PMCID: PMC5359217 DOI: 10.3389/fimmu.2017.00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplant (HSCT) is used to treat increasing numbers of malignant and non-malignant disorders. Despite significant advances in improved human leukocyte antigens-typing techniques, less toxic conditioning regimens and better supportive care, resulting in improved clinical outcomes, acute graft-versus-host disease (aGvHD) continues to be a major obstacle and, although it principally involves the skin, gastrointestinal tract, and liver, the thymus is also a primary target. An important aim following HSCT is to achieve complete and durable immunoreconstitution with a diverse T-cell receptor (TCR) repertoire to recognize a broad range of pathogens providing adequate long-term adaptive T-lymphocyte immunity, essential to reduce the risk of infection, disease relapse, and secondary malignancies. Reconstitution of adaptive T-lymphocyte immunity is a lengthy and complex process which requires a functioning and structurally intact thymus responsible for the production of new naïve T-lymphocytes with a broad TCR repertoire. Damage to the thymic microenvironment, secondary to aGvHD and the effect of corticosteroid treatment, disturbs normal signaling required for thymocyte development, resulting in impaired T-lymphopoiesis and reduced thymic export. Primary immunodeficiencies, in which failure of central or peripheral tolerance is a major feature, because of intrinsic defects in hematopoietic stem cells leading to abnormal T-lymphocyte development, or defects in thymic stroma, can give insights into critical processes important for recovery from aGvHD. Extracorporeal photopheresis is a potential alternative therapy for aGvHD, which acts in an immunomodulatory fashion, through the generation of regulatory T-lymphocytes (Tregs), alteration of cytokine patterns and modulation of dendritic cells. Promoting normal central and peripheral immune tolerance, with selective downregulation of immune stimulation, could reduce aGvHD, and enable a reduction in other immunosuppression, facilitating thymic recovery, restoration of normal T-lymphocyte ontogeny, and complete immunoreconstitution with improved clinical outcome as the ability to fight infections improves and risk of secondary malignancy or relapse diminishes.
Collapse
Affiliation(s)
- Aisling M Flinn
- Medical School, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Andrew R Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
7
|
Altmann T, Gennery AR. DNA ligase IV syndrome; a review. Orphanet J Rare Dis 2016; 11:137. [PMID: 27717373 PMCID: PMC5055698 DOI: 10.1186/s13023-016-0520-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022] Open
Abstract
DNA ligase IV deficiency is a rare primary immunodeficiency, LIG4 syndrome, often associated with other systemic features. DNA ligase IV is part of the non-homologous end joining mechanism, required to repair DNA double stranded breaks. Ubiquitously expressed, it is required to prevent mutagenesis and apoptosis, which can result from DNA double strand breakage caused by intracellular events such as DNA replication and meiosis or extracellular events including damage by reactive oxygen species and ionising radiation. Within developing lymphocytes, DNA ligase IV is required to repair programmed DNA double stranded breaks induced during lymphocyte receptor development. Patients with hypomorphic mutations in LIG4 present with a range of phenotypes, from normal to severe combined immunodeficiency. All, however, manifest sensitivity to ionising radiation. Commonly associated features include primordial growth failure with severe microcephaly and a spectrum of learning difficulties, marrow hypoplasia and a predisposition to lymphoid malignancy. Diagnostic investigations include immunophenotyping, and testing for radiosensitivity. Some patients present with microcephaly as a predominant feature, but seemingly normal immunity. Treatment is mainly supportive, although haematopoietic stem cell transplantation has been used in a few cases.
Collapse
Affiliation(s)
- Thomas Altmann
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Great North Children's Hospital, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Abstract
Type 1 diabetes (T1D) is a chronic disease resulting from the selective autoimmune destruction of pancreatic islet β cells. The absence and/or breakdown of immune self-tolerance to islet β cells is now recognized as the essential cause for the development of the diabetogenic autoimmune response. For a long time, a failure in peripheral tolerogenic mechanisms was regarded as the main source of an inappropriate immune process directed against insulin-secreting β cells. While defective peripheral self-tolerance still deserves to be further investigated, the demonstration that all members of the insulin gene family are transcribed in thymic epithelial cells (TECs) of different species under the control of the AutoImmune REgulator (AIRE) gene/protein has highlighted the importance of central self-tolerance to insulin-secreting islet β cells. Moreover, there is now evidence that a primary or acquired failure in thymus-dependent central self-tolerance to β cells plays a primary role in T1D pathogenesis. This novel knowledge is currently translated into the development of innovative tolerogenic/regulatory approaches designed to reprogram the specific immune self-tolerance to islet β cells.
Collapse
Affiliation(s)
- Vincent Geenen
- University of Liege, GIGA-I3 Center of Immunology, CHU-B34, B-4000 Liege-Sart Tilman, Belgium.
| |
Collapse
|
9
|
Lewis D, Chan D, Pinheiro D, Armitage‐Chan E, Garden O. The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J Vet Intern Med 2012; 26:457-82. [PMID: 22428780 PMCID: PMC7166777 DOI: 10.1111/j.1939-1676.2012.00905.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 02/06/2023] Open
Abstract
Sepsis, the systemic inflammatory response to infection, represents the major cause of death in critically ill veterinary patients. Whereas important advances in our understanding of the pathophysiology of this syndrome have been made, much remains to be elucidated. There is general agreement on the key interaction between pathogen-associated molecular patterns and cells of the innate immune system, and the amplification of the host response generated by pro-inflammatory cytokines. More recently, the concept of immunoparalysis in sepsis has also been advanced, together with an increasing recognition of the interplay between regulatory T cells and the innate immune response. However, the heterogeneous nature of this syndrome and the difficulty of modeling it in vitro or in vivo has both frustrated the advancement of new therapies and emphasized the continuing importance of patient-based clinical research in this area of human and veterinary medicine.
Collapse
Affiliation(s)
- D.H. Lewis
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Present address:
Langford Veterinary ServicesSmall Animal HospitalLangford HouseLangfordBristol, BS40 5DUUK
| | - D.L. Chan
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
| | - D. Pinheiro
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| | - E. Armitage‐Chan
- Davies Veterinary SpecialistsManor Farm Business ParkHertfordshireSG5 3HR, UK (Armitage‐Chan)
| | - O.A. Garden
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| |
Collapse
|
10
|
Ahlgren KM, Moretti S, Lundgren BA, Karlsson I, Ahlin E, Norling A, Hallgren A, Perheentupa J, Gustafsson J, Rorsman F, Crewther PE, Rönnelid J, Bensing S, Scott HS, Kämpe O, Romani L, Lobell A. Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model. Eur J Immunol 2011; 41:235-45. [PMID: 21182094 DOI: 10.1002/eji.200939883] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 08/17/2010] [Accepted: 10/07/2010] [Indexed: 02/04/2023]
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is a multiorgan autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. Chronic mucocutaneous candidiasis, hypoparathyroidism and adrenal failure are hallmarks of the disease. The critical mechanisms causing chronic mucocutaneous candidiasis in APS-1 patients have not been identified although autoantibodies to cytokines are implicated in the pathogenesis. To investigate whether the Th reactivity to Candida albicans (C. albicans) and other stimuli was altered, we isolated PBMC from APS-1 patients and matched healthy controls. The Th17 pathway was upregulated in response to C. albicans in APS-1 patients, whereas the IL-22 secretion was reduced. Autoantibodies against IL-22, IL-17A and IL-17F were detected in sera from APS-1 patients by immunoprecipitation. In addition, Aire-deficient (Aire(0/0) ) mice were much more susceptible than Aire(+/+) mice to mucosal candidiasis and C. albicans-induced Th17- and Th1-cell responses were increased in Aire(0/0) mice. Thus an excessive IL-17A reactivity towards C. albicans was observed in APS-1 patients and Aire(0/0) mice.
Collapse
Affiliation(s)
- Kerstin M Ahlgren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vogel AB, Haasbach E, Reiling SJ, Droebner K, Klingel K, Planz O. Highly pathogenic influenza virus infection of the thymus interferes with T lymphocyte development. THE JOURNAL OF IMMUNOLOGY 2010; 185:4824-34. [PMID: 20861351 DOI: 10.4049/jimmunol.0903631] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in humans. Still, the basis for their increased pathogenesis remains unclear. Additionally, the high morbidity in the younger population stays inexplicable, and the recent pandemic H1N1v outbreak in 2009 demonstrated the urgent need for a better understanding about influenza virus infection. In the present study, we demonstrated that HPAIV infection of mice not only led to lung destruction but also to functional damage of the thymus. Moreover, respiratory dendritic cells in the lung functioned as targets for HPAIV infection being able to transport infectious virus from the lung into the thymus. The pandemic H1N1 influenza virus was able to infect respiratory dendritic cells without a proper transport to the thymus. The strong interference of HPAIV with the immune system is especially devastating for the host and can lead to lymphopenia. In summary, from our data, we conclude that highly pathogenic influenza viruses are able to reach the thymus via dendritic cells and to interfere with T lymphocyte development. Moreover, this exceptional mechanism might not only be found in influenza virus infection, but also might be the reason for the increased immune evasion of some new emerging pathogens.
Collapse
Affiliation(s)
- Annette B Vogel
- Friedrich-Loeffler-Institute, Institute of Immunology, University Hospital, Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Severe combined immunodeficiencies represent a heterogeneous group of genetic disorders affecting genes of both early and late steps in lymphocytes development, a process tightly controlled by thymic epithelial cells. Detailed analysis of thymic morphology aids to the assessment of the severity of the immune disorder and may be critical to the understanding of the role of the genetic defects in the pathophysiology of these diseases. In this review, we highlight recent advancements in the characterization of the thymic microenvironment in primary immunodeficiencies. RECENT FINDINGS Crosstalk between thymocytes and thymic epithelial cells is essential to preserve thymic architecture and function, and therefore to promote T-cell maturation and development of self-tolerance. Early severe defects in T-cell development result in profound abnormalities of thymic epithelial cells differentiation with loss of AIRE expression and severe reduction of thymic dendritic and T-regulatory cells. Differently, later defects in T-cell development that are permissive for normal thymocytes development allow cortico-medullary differentiation with partially preserved AIRE expression and dendritic/T-regulatory cells distribution. Hypomorphic mutations in the same genes partially permissive to T-cell development may result in a more complex phenotype with immunodysreactivity and peculiar thymic alterations. SUMMARY Although the molecular and genetic bases of primary immunodeficiencies directly aid to both diagnosis and management of the patients, the detailed analysis of thymic morphology critically contributes to unveil the pathophysiology of these diseases.
Collapse
|
13
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
14
|
Kämpe O. Introduction: Autoimmune polyendocrine syndrome type 1 (APS-1): a rare monogenic disorder as a model to improve understanding of tolerance and autoimmunity. J Intern Med 2009; 265:511-3. [PMID: 19382990 DOI: 10.1111/j.1365-2796.2009.02094.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- O Kämpe
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|